Code No: 131AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year I Semester Examinations, May/June - 2019 MATHEMATICS-I

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE, MSNT)
Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Solve the following differential equation $x \frac{d y}{d x}-y=x^{2}$.
b) Find the complimentary function for the equation $\frac{d^{4} y}{d x^{4}}+4 y=\cos 2 x+\cos 4 x$.
c) Find the value of k such that the rank of the matrix $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10\end{array}\right]$ is 2 .
d) Find the LU decomposition of $A=\left[\begin{array}{cc}1 & 3 \\ 4 & -1\end{array}\right]$.
e) If a square matrix A has an Eigen value λ then what is the Eigen value of the matrix $k A^{T}$ where $k \neq 0$ is a scalar.
f) If a matrix $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2\end{array}\right]$ then what are the Eigen values of A^{2} ?
g) If $u=e^{x y z}$ find the value of $\frac{\partial^{3} u}{\partial x \partial y \partial z}$.
h) If $v=\frac{x^{3} y}{x^{3}+y^{3}}$ find the value of $x \frac{\partial v}{\partial x}+y \frac{\partial u}{\partial y}$.
i) Form the partial differential equation by eliminating the arbitrary constants a, b $z=(x+a)(y+b)$.
j) Solve $z p+y q=x$.

PART-B

(50 Marks)
2.a) \quad Solve $\left(D^{2}-4\right) y=x \sin x$
b) Find the current at any time $t>0$ in a circuit having in series a constant electromotive force 40 V , a resistor 10Ω, and an inductor 0.2 H given that the initial current is zero. Find the current when emf is $150 \cos 200 \mathrm{t}$.

OR

3.a) Solve $\left(D^{2}+2 D^{2}+1\right) y=x^{2} \cos x$
b) Solve by the method of variation of parameters: $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$.
4. Factorize the matrix by the LU decomposition method $\left[\begin{array}{ccc}2 & -3 & 1 \\ 3 & 4 & 2 \\ 2 & -3 & 4\end{array}\right]$
5.a) For what values of λ and μ do the system of equations $x+y+z=6, x+2 y+3 z=10$, $x+2 y+\lambda z=\mu$ have i) no solution, ii) unique solution iii) more than one solution?
b) Find the value of k for which the system of equations:
$(k+1) x+8 y=4 k, k x+(k=3) y=3 k-1$ has infinitely many solutions.
6 Verify Cayley Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$ and obtain A^{-1} and A^{3}.

OR

7. Reduce the quadratic form $3 x^{2}+3 y^{2}+3 z^{2}-2 y z+2 z x+2 x y$ to its canonical form.
8.a) Determine the functional dependence and find the relation between $u=\frac{x-y}{x+y}, v=\frac{x y}{(x-y)^{2}}$.
b) If $y_{1}=\frac{x_{2} x_{3}}{x_{1}}, y_{2}=\frac{x_{3} x_{1}}{x_{2}}, y_{3}=\frac{x_{1} x_{2}}{x_{3}}$, Find the Jacobian of y_{1}, y_{2}, y_{3} with respect to x_{1}, x_{2}, x_{3}.

OR

9.a) Obtain the Taylor's expansion of $\tan ^{-1} \frac{y}{x}$ about $(1,1)$ upto and including second degree terms.
b) Find a point within a triangle such that the sum of the squares of its distances from the three angular points is a minimum.
10. Solve the partial differential equations:
a) $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=\left(z^{2}-x y\right)$
b) $x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=(x+y) z$.
11. Solve the partial differential equations
a) $p^{2}+q^{2}=z^{2}(x+y)$
b) $x^{2} p^{2}+y^{2} q^{2}=z$.

