

www.FirstRanker.com

www.FirstRanker.com

R18

Max. Marks: 75

(25 Marks)

Code No: 152AC JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, May - 2019 BASIC ELECTRICAL ENGINEERING (Common to ECE, EIE)

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

1.a)	Write short notes on voltage source and current source.	[2]
b)	Define average value of a sinusoidal quantity.	[2]
c)	What is practical transformer?	[2]
d)	Define slip.	[2]
e)	List out the types of wires.	[2]
f)	State Norton's theorem.	[3]
g)	Show that power dissipated by a pure capacitor excited by a sinusoidal sour	rce is zero.
		[3]
h)	Write short notes on auto transformer.	[3]
i)	Write short notes on salient pole rotor of a $3-\phi$ synchronous generator.	[3]
j)	What is the significance of earthing?	[3]

(50 Marks)

- 2.a) Explain in detail the passive elements.
 - b) By using Thevenin's theorem shown in figure, find the current in 6Ω resistor. [5+5]

- 3.a) State and explain Superposition theorem by taking one example.
- b) Three resistors: $R_1=5\Omega$, $R_2=10\Omega$, $R_3=15\Omega$ are connected in parallel across a DC voltage source: 100V. Find the currents I_1 , I_2 , I_3 through R_1 , R_2 , R_3 and the total current supplied by 100V source. [5+5]

www.FirstRanker.com

FirstRanker.com

- 4.a) Show that the resonant frequency ω_0 of an RLC series circuit is the geometric mean of ω_1 and ω_2 , the lower and upper half power frequencies respectively.
 - b) A circuit consisting of three branches, Z_2 is in parallel with Z_3 the combination is in series with Z_1 having the values $Z_1=10+j30$, $Z_2=5+j10$ and $Z_3=4-j16$ connected across single phase, 100 V, 50 Hz supply. Find i) I_1 , I_2 and I_3 ii) V_1 and V_2 [5+5]

OR

- 5.a) Derive the expression for RMS value of alternating current wave $I = I_m Sin \omega t$.
 - b) A coil takes a current of 1 A at 0.6 lagging power factor from a 220 V, 60 Hz single phase source. If the coil is modeled by a series RL circuit find i) The complex power in the coil and ii) The values of R and L. [5+5]
- 6.a) Draw and derive the equivalent circuit parameters of single phase transformers.
 - b) A single phase transformer working at unity power factor has an efficiency of 90% at both one half load and at the full load of 500 W. Determine the efficiency at 75% of full load.

OR

- 7.a) Define and explain efficiency and regulation of a transformer.
- b) A 100 kVA, 1000/10000 V, 50 Hz, Single phase transformer has an iron loss of 1100 W. The copper loss with 5 A in the high voltage winding is 400 W. Calculate the efficiency at 25 %, 0.8 Power factor. The output terminal voltage being maintained at 10000 V.

[5+5]

8.a)	Explain the slip-torque characteristics of 3-phase induction motor.		
b)	Explain the principle and operation of 1-phase induction motor.	[5+5]	
	OR		
9.a)	Explain the working principles of Synchronous generator.		
b)	A 6 pole, 3-ø induction motor runs at 1140 rpm on full load when supplied from	a 60Hz	
	supply. Determine the synchronous speed and slip at full load.	[5+5]	
	×		
10.	Explain the components of LT switch gear in detail.	[10]	
OR			

11. Explain the types of batteries and its important characteristics. [10]

---00000----