Code No: 152AC

R18

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
 B.Tech I Year II Semester Examinations, May - 2019
 BASIC ELECTRICAL ENGINEERING
 (Common to ECE, EIE)

Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)
1.a) Write short notes on voltage source and current source.
b) Define average value of a sinusoidal quantity.
c) What is practical transformer?
d) Define slip.
e) List out the types of wires.
f) State Norton's theorem.
g) Show that power dissipated by a pure capacitor excited by a sinusoidal source is zero.
h) Write short notes on auto transformer.
i) Write short notes on salient pole rotor of a 3- ϕ synchronous generator.
j) What is the significance of earthing?

PART-B

(50 Marks)
2.a) Explain in detail the passive elements.
b) By using Thevenin's theorem shown in figure, find the current in 6Ω resistor. [5+5]

3.a) State and explain Superposition theorem by taking one example.
b) Three resistors: $\mathrm{R}_{1}=5 \Omega, \mathrm{R}_{2}=10 \Omega, \mathrm{R}_{3}=15 \Omega$ are connected in parallel across a DC voltage source: 100 V . Find the currents $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ through $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ and the total current supplied by 100 V source.
4.a) Show that the resonant frequency ω_{0} of an RLC series circuit is the geometric mean of ω_{1} and ω_{2}, the lower and upper half power frequencies respectively.
b) A circuit consisting of three branches, Z_{2} is in parallel with Z_{3} the combination is in series with Z_{1} having the values $\mathrm{Z}_{1}=10+\mathrm{j} 30, \mathrm{Z}_{2}=5+\mathrm{j} 10$ and $\mathrm{Z}_{3}=4-\mathrm{j} 16$ connected across single phase, $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find i) I_{1}, I_{2} and I_{3} ii) V_{1} and V_{2}

OR

5.a) Derive the expression for RMS value of alternating current wave $\mathrm{I}=\mathrm{I}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t}$.
b) A coil takes a current of 1 A at 0.6 lagging power factor from a $220 \mathrm{~V}, 60 \mathrm{~Hz}$ single phase source. If the coil is modeled by a series RL circuit find i) The complex power in the coil and ii) The values of R and L .
6.a) Draw and derive the equivalent circuit parameters of single phase transformers.
b) A single phase transformer working at unity power factor has an efficiency of 90% at both one half load and at the full load of 500 W . Determine the efficiency at 75% of full load.

OR

7.a) Define and explain efficiency and regulation of a transformer.
b) A $100 \mathrm{kVA}, 1000 / 10000 \mathrm{~V}, 50 \mathrm{~Hz}$, Single phase transformer has an iron loss of 1100 W . The copper loss with 5 A in the high voltage winding is 400 W . Calculate the efficiency at $25 \%, 0.8$ Power factor. The output terminal voltage being maintained at 10000 V .
8.a) Explain the slip-torque characteristics of 3-phase induction motor.
b) Explain the principle and operation of 1-phase induction motor.

OR

9.a) Explain the working principles of Synchronous generator.
b) A 6 pole, $3-\varnothing$ induction motor runs at 1140 rpm on full load when supplied from a 60 Hz supply. Determine the synchronous speed and slip at full load.
10. Explain the components of ET switch gear in detail.

OR

11. Explain the types of batteries and its important characteristics.
