www.FirstRanker.com

R16

Code No: 133AJ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2019 DIGITAL LOGIC DESIGN

(Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART- A	
		(25 Marks)
1.a)	What are 2's complement and 9's complement of a numbers? Give examples.	
b)	State and prove De Morgan theorems.	[3]
c)	What are minterms and maxterms? Give examples for each.	[2]
d)	Define pair quad and octet in K-Maps and give examples.	[3]
e)	Draw the logic circuit of a full adder and give its truth table.	[2]
f)	Write the functions of a decoder and multiplexer.	[3]
g)	Draw the logic diagram of a master slave J-K flip-flop.	[2]
h)	Describe the race free state assignment in asynchronous sequential circuits.	[3]
i)	What are PLAs and PALs?	[2]
j)	Explain about arithmetic operations with examples.	[3]
•		
	PART-B	
		(50 Marks)
2.a)	Explain various number systems and codes and their conversion with examp	oles for each.
b)	Simplify the following Boolean expressions to a minimum number of literals	
	(i) $ABC+A'B+ABC'$ (ii) $xy + x(wz+wz')$	[5+5]
	OR	
3.a)	Express the following numbers in decimal: $(10110.0101)_2$, $(16.5)_{16}$, $(26.24)_8$.	
b)	Demonstrate by means of truth tables the Boolean Associative law and distrib	outive law.
c)	Simplify the Boolean expression to minimum number of literals: (A+B)' (A'+	
4.a)	Simplify the following Boolean functions, using a four variable Karnaugh	map method
	and implement the simplified function using NAND gates	
	$F(A,B,C,D) = \sum_{i=0}^{n} 0.2, 4, 5, 6, 7, 8, 10, 13, 15)$	
b)	Show that the dual of the exclusive OR is also its compliment.	[5+5]
	OR	
5.a)	Draw the multiple level NAND circuit for the following expression: $(AB'+CD')E + BC(A+B)$	
b)	Simplify the following four variable Boolean function and implement the same using	
	NAND logic. F (A. B. C. D) = Σ (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)	[5+5]

www.FirstRanker.com

- 6.a) Construct a 4-bit BCD adder-substractor circuit using BCD adder and 9's complementer.
- b) Explain the working and functions of decoders and encoders. Construct 2/4 line decoder with logic gates with enable input. [5+5]

OR

- Construct a 4 bit 2's complement adder using full adders and perform addition and subtraction by taking 4-bit numbers with examples.
 - Explain the design procedure for multiplexers and de-multiplexers and draw the logic diagram of a 4-to-1 line multiplexer with logic gates. [5+5]
- 8.a) Design 4-bit shift register using D flip-flops and explain its working with the help of timing diagrams.
 - Design a counter with the following repeated binary sequence: 0,1,2,3,4,5,6, use b) JK flip-flops. [5+5]

- Draw the circuit diagram of a 4-bit binary counter with parallel load and explain its 9.a) working with its function table.
 - Design a 4 bit synchronous counter with D flip flops and explain its working. b)
- Given 32 × 8 ROM with enable input, Show the external connections necessary to 10.a) construct a 128×8 ROM with 4 chips and a decoder.
 - b) Explain the working of a PLA with a schematic and implement the following two Boolean functions with a PLA:

$$F_1(A, B, C) = \sum (0, 1, 2, 4) \text{ and } F_2(A, B, C) = \sum (0.5, 6.7).$$
 [5+5]

- 11.a) Explain the functions and applications of PLAs in memory addressing and implement the following two Boolean functions with a PLA:
 - $F_1(A, B, C) = \sum (0, 1, 3, 5)$ and $F_2(A, B, C) = \sum (1, 2, 4, 7)$
 - b) What are sequential programmable devices? Draw the sequential programmable logic for a basic microcell logic. [5+5]

---00000---