Code No: 133BD
R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, May/June - 2019
 MATHEMATICS - IV

(Common to CE, EEE, ME, ECE, CSE, EIE, IT MCT, ETM MMT, AE, MIE, PTM, CEE, MSNT) Time: 3 Hours

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) State the necessary and sufficient conditions for a function $f(z)=u+i v$ to be analytic.
b) Show that $f(z)=|z|^{2}$ is not analytic at any point.
c) State Cauchy's integral theorem.
d) Find the poles and the residues at the poles of the function $f(z)=\frac{e^{z}}{\cos \pi z}$.
e) Define bilinear transformation and cross ratio.
f) Find the image of the circle $|z|=2$, under the transformation $w=z+3+2 i$.
g) State Fourier integral theorem.
h) Expand $f(x)=\pi x-x^{2}$ in a half range sine series in $(0, \pi)$.
i) Classify the partial differential equation $u_{x x}+6 u_{x y}+2 u_{y y}+2 u_{x}-2 u_{y}+u=x^{2} y$.
j) Write the three possible solutions of the heat equation.

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \tag{3}
\end{equation*}
$$

PART-B

(50 Marks)
2.a) If $f(z)$ is a regular function of z, prove that

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2} \tag{5+5}
\end{equation*}
$$

b) Let $f(z)=u(r, \theta)+i v(r, \theta)$ be an analytic function. If $u=-r^{3} \sin 3 \theta$, then construct the corresponding analytic function $f(z)$ in terms of z.

OR
3.a) Show that the function $f(z)$ defined by
$f(z)=\frac{x^{2} y^{3}(x+i y)}{x^{6}+y^{10}} \quad$ for $z \neq 0$, is not analytic at the origin, even though it satisfies the $f(0)=0$
Cauchy-Riemann equations at the origin.
b) Determine the analytic function whose real part is $\log \sqrt{x^{2}+y^{2}}$.
4. Represent the function $\frac{1}{z^{2}-4 z+3}$ in the domain
(a) $1<|z|<3$
(b) $|z|<1$.

OR

5.a) Expand the function $f(z)=\frac{z}{(z+1)(z+2)}$ about $z=-2$, and name the series thus obtained.
b) Evaluate $\oint_{C} \frac{\mathrm{e}^{\mathrm{z}}}{(\mathrm{z}+3)(\mathrm{z}+2)} \mathrm{dz}$, where C is the circle $|z-1|=\frac{1}{2}$.
6. Evaluate the integral using contour integration $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$.

OR

7. Show that the transformation $w=i \frac{1-z}{1+z}$ transforms the circle $|z|=1$ into the real axis of w plane and the interior of the circle $|z|<1$ into the upper half of the w plane.
8. Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}1-x^{2}, & \text { if }|x|<1 \\ 0, & \text { if }|x|>1 .\end{array}\right.$. Hence evaluate
$\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$.

OR

9.a) Obtain the half range cosine series for $f(x)=\left\{\begin{array}{cl}k x, & \text { for } 0 \leq x<L / 2 \\ k(L-x), & \text { for } L / 2 \leq x \leq L\end{array}\right.$.
b) Find the Fourier sine transform of $f(x)=e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin m x}{x^{2}+1} d x=\frac{\pi}{2} e^{-m}$.
10. A string is stretched and fastened to two points L apart. Motion is started by displacing the string in the form $y=a \sin \frac{\pi x}{L}$ from which it is released at timet $=0$. Find the displacement of any point at a distance x from one end at time t.

OR
11. Write down the one dimensional heat equation. Find the temperature $u(x, t)$ in a slab whose ends $x=0$ and $x=L$ are kept at zero temperature and whose initial temperature $f(x)$ is given by
$f(x)=\left\{\begin{array}{ll}k, & \text { when } 0<x<\frac{1}{2} L \\ 0, & \text { when } \frac{1}{2} L<x<L\end{array}\right.$.

