

www.FirstRanker.com

www.FirstRanker.com

Max. Marks: 75

Code No: 133BQ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2019 SIGNALS AND STOCHASTIC PROCESS (Common to ECE, ETM)

Time: 3 Hours

Note: This question paper contains two parts A and B.Part A is compulsory which carries 25 marks. Answer all questions in Part A.Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

		(25 Marks)
1.a)	Give the condition for the physical reliability of a system.	[2]
b)	What are the properties of convolution?	[3]
c)	State any two properties of Fourier series.	[2]
d)	Find the Fourier transform of the signal $x(t) = 20 \operatorname{sinc} (20t)$.	[3]
e)	Explain the concept of region of convergence for Laplace transforms.	[2]
f)	Write the differentiation in time property of Laplace transform.	[3]
g)	Define random process.	[2]
h)	Give the relation between correlation and Convolution.	[3]
i)	Verify that the cross spectral density of two uncorrelated star processes is an impulse function.	tionary random [2]
j)	Define cross – spectral density and its examples.	[3]
	PART-B	
	00	(50 Marks)
2.	Graphically convolve the signals	
	$X_{1}(t) = \begin{cases} 1; \ for - T \le t \le T \\ 0; \ elsewhere \end{cases} \text{ and } X_{2}(t) = \begin{cases} 1; \ for - 2T \le t \le 2T \\ 0; \ elsewhere \end{cases}$	[10]
	OR OR	
3.a)	What is an LTI system? Explain the properties of it.	
b)	Find whether x (t) = A $e^{-\alpha(t)} u(t)$, $\alpha > 0$ is an energy signal or not.	[5+5]
4.a)	Obtain the Fourier series coefficients for $x(t) = A \sin \omega_0 t$.	
b)	What is the Significance of Hilbert Transform? Explain.	[5+5]
-	UR	[10]
э.	Define Fourier transform. Explain the properties of Fourier transform.	[10]
6.a)	Find the Laplace transform of $x(t) = -t^2 e^{-at} u(-t)$ and indicate its ROC	
b)	Find the inverse Laplace transform of	
- /	x(s) = 5(s+5)/s(s+3)(s+7); Re(s) > -3.	[5+5]
	OR	r - 1
7.a)	Find the inverse Z- transform of $X(z) = \frac{1+3z^{-1}}{1+3z^{-1}+2z^{-2}}$ for different possible	ble ROCs.

b) Give the relationship between z-transform and Laplace Transform. [7+3]

www.FirstRanker.com

www.FirstRanker.com

[5+5]

- 8.a) A Random Process $X(t) = A \operatorname{Cos} (2\pi f_c t)$, where A is a Gaussian Random Variable with zero mean and unity variance, is applied to an ideal integrator, that integrates with respect to 't', over (0,t). Check the output of integrator for stationarity.
 - b) A random Process is defined as $X(t)=3 \operatorname{Cos}(2\pi t+Y)$, where Y is a random Variable with $p(Y=0)=p(Y=\pi)=1/2$. Find the mean and Variance of the Random Variable X(2). [5+5]

OR

- 9.a) State and prove properties of cross correlation function.
- b) If the PSD of X(t) is $S_{xx}(\omega)$. Find the PSD of dx(t)/dt.
- 10.a) Find and plot the Autocorrelation function of(i) Wide band White noise (ii) Band Pass White noise.
 - b) Derive the expression for the Cross Spectral Density of the input Process X(t) and the output process Y(t) of an LTI system in terms of its Transfer function. [5+5]

OR

11. The auto correlation function of a random process X(t) is R_{XX}(τ) = 3+2 exp (-4τ²)
a) Evaluate the power spectrum and average power of X(t).
b) Calculate the power in the frequency band -1/√2 < ω < 1/√2. [5+5]

---ooloo-on her www.first.anker