www.FirstRanker.com

Code No: 134BD

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, May - 2019 FORMAL LANGUAGES AND AUTOMATA THEORY (Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b as sub questions.

PART - A

		(25 Marks)
1.a)	Define Kleene Closure and Positive Closure?	[2]
b)	Define Moore Machine?	[3]
c)	Define a Regular Expression.	[2]
d)	Find the simplified regular expression for the following regular expression	
	r(r*r + r*) + r*?	[3]
e)	Define Context Free Grammar.	[2]
f)	Define Push Down Automata.	[3]
g)	Define Turing machine.	[2]
h)	What is Chomsky Normal Form?	[3]
i)	What is undecidable problem?	[2]
j)	Compare recursive and recursive enumerable languages.	[3]

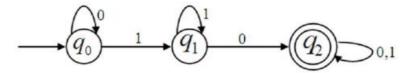
PART – B

(50 Marks)

2. Construct NFA with ε which accepts a language consisting the strings of any number of 0's followed by any number of 1's followed by any number of 2's And also convert into NFA without ε transitions. [10]

OR

- 3. Construct the Moore machine to determine residue mod 3 and convert into Mealy machine.
- 4.a) Test whether the following two FSM's are equivalent.


M1	0	1
→ A	В	D
B	A	C
C	D	В
(D)	C	A

M2	0	1
→ P	R	R
Q	R	P
R	P	Q

b) Apply pumping lemma for the language $L=\{a^n/n \text{ is prime}\}$ and prove that it is not regular? [5+5]

5. Construct the regular expression corresponding to the language accepted by following DFA. [10]

- 6.a) Elaborate on left most derivation and right most derivation.
 - b) Design Push down Automata for $L = \{a^{2n}b^n \mid n \ge 1\}$ 3.

[5+5]

OR

7. Construct the CFG for the PDA $M=(\{q_0,q_1\},\,\{0,1\},\,\{R,Z_0\},\,\delta,\,q_0,\,Z_0,\,\Phi\,)$ and δ is given by

 $\delta(q_0,1,Z_0)=(q_0,RZ_0)$

 $\delta(q_0, 1, R) = (q_0, RR)$

 $\delta(q_0, 0, R) = (q_1, R)$

 $\delta(q_1,0,Z_0)=(q_0,Z_0)$

 $\delta(q_0,\epsilon, Z_0) = (q_0,\epsilon)$

 $\delta(q_1, 1, R) = (q_1, \varepsilon). \tag{10}$

- 8.a) List out and discuss the closure properties of CFL.
 - b) Construct CFG without ε production from the one which is given below

 $S \rightarrow a \mid Ab \mid aBa$

 $A \rightarrow b \mid \epsilon$

 $B \rightarrow b \mid A$ [5+5]

OR

- 9. Design a Turing Machine to accept $L=\{WcW^R \mid W \text{ is in } (a+b)^*\}.$ [10]
- 10.a) Discuss in brief about NP Hard problems.
 - b) Discuss the examples of undecidable problems.

[5+5]

OR

- 11.a) Explain about the undecidable problems about turing machines.
 - b) Distinguish between class P and class NP Problems.

[5+5]

---00000---