R16
 Code No: 134CF
 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
 B.Tech II Year II Semester Examinations, May - 2019
 SWITCHING THEORY AND LOGIC DESIGN
 (Common to EEE, ECE, MCT, ETM)

Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A

(25 marks)
1.a) Perform the following conversions (476.64) $)_{10}=()_{2}=()_{8}$.
b) Perform the following operation using 2's complement method 1111.10-0101.11.[3]
c) Define Multiplexer. Explain in brief about 2:1 Mux. [2]
d) Explain the procedure to construct the 3 variable K-map with an example. [3]
e) Derive the characteristic equations of D and T flipflop. [2]
f) Give the differences between latches and flipflops. [3]
g) Define state diagram. [2]
h) List the features of sequential circuits. [3]
i) What are finite state machines? [2]
j) List the limitations of finite state machines. [3]

PART - B

2. Design and realize the 3 bit binary to unit distance code using NOR gates.
(50 Marks)

OR

3. Simplify and realize the following Boolean expression using logic gates.
a) $\mathrm{Y}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{BC}$
b) $\mathrm{Y}=\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)$
4. Design a digital system to compare two binary numbers of 1 bit by using logic gates. [10] OR
5. Realize 3:8 maxterm generator using 2:4 maxterm generators. Using the same, Design a system to provide the difference of two numbers. Use external two input gates only. [10]
6. Explain master slave JK flipflop with neat timing diagram.

OR

7. Explain the principle of Universal shift Register(USR). Using the same, design 4-bit, mod-8 twisted ring counter.
8. Design a digital system using data flipflops to monitor the status of the bookrack of maximum occupancy 10 . The number of books available in the bookrack on a daily basis for the following conditions over a week.
a) On Monday, there were 10 books.
b) On Tuesday, 2 books were removed and donated to near by library.
c) On Wednesday, one book is added to the bookrack.
d) Next day, 3 books were removed from the rack and given it to neighbour.
e) On Friday, one book was taken out for reading.
f) On Saturday, neighbour returned only two books.

All the remaining books were taken out on Sunday to clean the rack.

OR

9.a) Discuss about the approaches of designing synchronous sequential finite state machines.
b) Design a digital controller for the state table shown below using sequential component as single input data flip flop.

Present state	Next state, $\operatorname{Output}(\mathrm{z})$	
	$\operatorname{Input}(\mathrm{x})=0$	$\operatorname{Input}(\mathrm{x})=1$
A	$\mathrm{C}, 0$	$\mathrm{~B}, 1$
B	$\mathrm{D}, 0$	$\mathrm{D}, 0$
C	$\mathrm{C}, 1$	$\mathrm{~A}, 0$
D	$\mathrm{A}, 1$	$\mathrm{~A}, 0$

10. Draw the state diagram of a Mealy machine that produces a 1 output if there have been four or more consecutive 1 inputs or two or more consecutive 0 inputs.

OR

11.a) With a neat block diagram, explain the moore model of a clocked synchronous sequential circuit.
b) Illustrate partition techniques in sequential circuits.

