www.FirstRanker.com

R16 Code No: 134BC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, May - 2019 FLUID MECHANICS AND HYDRAULIC MACHINES

(Common to ME, MSNT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b as sub questions.

PART - A

		(25 Marks)	
1.a)	Name the phenomenon of capillarity.	[2]	
b)	How the pressure can be measured by a manometer.	[3]	
c)	Name the different forces present in a fluid flow. For the Euler's equation	Euler's equation of motion,	
	which forces are taken into consideration?	[2]	
d)	Explain the working principle of Orifice meter.	[3]	
e)	Define boundary layer and boundary layer thickness.	[2]	
f)	Define Hydraulic gradient line and Total energy line.	[3]	
g)	Mention the causes of cavitation in Francis turbine.	[2]	
h)	How governing of speed is done on Pelton wheel?	[3]	
i)	How the centrifugal pumps are classified?	[2]	
j)	Define Slip, percentage slip and negative slip in of a reciprocating pump.	[3]	
PART B			
		(50 Marks)	
2.	Differentiate between:		
	a) Absolute pressure and gauge pressure		
	b) Piezometer and simple manometer		
	c) U-tube differential manometer and inverted U-tube differential manometer	·. [10]	
	OR		
3.	Define viscosity. A plate having an area of 0.7 m ² is sliding down the inclined plane at		
45° to the horizontal with a velocity of 0.45 m/s. there is a cushion of fluid 2 mm th		2 mm thick	
	between the plane and the plate. Find the viscosity of the fluid if the weight of	of the plate is	

- between the plane and the plate. Find the viscosity of the fluid if the weight of the plate is 300N. [10]
- 4.a) State the momentum equation. How will you apply momentum equation for determining the force exerted by a floating liquid on a pipe bend?
 - Derive Bernoulli's equation through Euler's equation of motion. b) [5+5]

OR

5. Water flows through a pipe AB 1.2 m diameter at 3 m/s and then passes through a pipe BC 14.5 m dimeter. At C, the pipe branches. Branch CD is 0.8 m in diameter and carries one-third of the flow in AB. The flow velocity in branch CE is 2.5 m/s. find the volume rate of flow in AB, the velocity in BC, the velocity in CD and the diameter of CE. [10]

www.FirstRanker.com

www.FirstRanker.com

6. Explain in detail laminar boundary layer, turbulent boundary layer, laminar sub-layer.

OR

- **7.**a) At a sudden enlargement of a water main from 240 mm to 480 mm diameter, the hydraulic gradient rises by 10 mm. estimate rate of flow.
 - b) Derive an expression for minor losses due to sudden contraction. [5+5]
- 8.a) Show the governing mechanism of a Pelton wheel turbine with a neat sketch and explain how it works.
 - b) A Pelton wheel has a mean bucket speed of 10 meters per second with a jet of water flowing at the rate of 700 litres/s under a head of 30 meters. The buckets deflect the jet through an angle of 160⁰. Calculate the power given by water to the runner and hydraulic efficiency of the turbine. Assume co-efficient of velocity as 0.98. [5+5]

OR

- 9.a) Define the terms 'unit power', 'unit speed' and 'unit discharge' with reference to a hydraulic turbine. Also derive expressions for these terms.
 - b) A Kaplan turbine runner is to be designed to develop 9100 kW. The net available head is 5.6 m. If the speed ratio = 2.09, flow ratio = 0.68, overall efficiency = 86% and the diameter of the boss is 1/3 the diameter of the runner. Find the diameter of the runner, its speed and the specific speed of the turbine. [5+5]
- 10.a) Obtain an expression for the work done by impeller of a centrifugal pump on water per second per unit weight of water.
 - b) The internal and external diameters of the impeller of a centrifugal pump are 200 mm and 400 mm respectively. The pump is running at 1200 r.p.m. The vane angles of the impeller at inlet and outlet are 20° and 30° respectively. The water enters the impeller radially and velocity of flow is constant. Determine the work done by the impeller per unit weight of water.

OR

- 11.a) Define and derive an expression for Manometric Efficiency, Mechanical Efficiency and Overall Efficiency.
 - b) A centrifugal pump is to discharge 0.118 m³/s at a speed of 1450 r.p.m. against a head of 25 m. The impeller diameter is 250 mm, its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller. [5+5]

---ooOoo---