

www.FirstRanker.com

www.FirstRanker.com

Code No: ME404ES

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, 2019 THERMODYNAMICS

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.Part B consists of 5 Units. Answer any one full question from each unit.

PART A (25 Marks)		
Q.No	Question	Bloom's Level
1.a)	Define intensive and extensive property.	L1
b)	Explain the concept of thermodynamic equilibrium?	L2
c)	Define Heat engine and Heat pump.	L1
d)	Explain the limitations of First law of thermodynamics.	L2
e)	Explain the similarities between work and heat.	L2
f)	Demonstrate work done equation for non flow reversible constant pressure process.	L2
g)	Define mole fraction and volume fraction of a gas constituent in a mixture.	L1
h)	Explain Dalton's Law of partial pressure.	L2
i)	Outline P-V and T-S diagrams of diesel cycle.	L2
j)	Explain mean effective pressure of otto cycle.	L2
2.	0.2m ³ of air at 4 bar and 130 ^o C is contained in a system. A reversible adiabatic	L3
	expansion takes place till the pressuctions to 1.02 bar. The gas is then heated at constant pressure till enthalpy increases by 2.5 KJ. Solve: (i) The work done (ii) The index of expansion, if the above process are replaced by a single reversible polytrophic process giving the same work between the same initial and final states.	
	OR OR	
3.	A platinum wire is used as a resistance thermometer. The wire resistance was found to be 10 Ω and 16 Ω at ice and steam points respectively and 30 Ω at sulphur boiling point 444.6° C. Solve the constants a and b in the equation. R= R ₀ (1 + aT +bT ²). Where T is in ^o C. Also find the resistance of wire at 500° C.	L3
4.	A reversible heat engine operates between two reservoirs at temperature 700° C and 50° C. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 50° C and -25° C. The heat transfer to the engine is 2500KJ and the net work output of the combined engine refrigerator plant is 400KJ. (i) Determine the heat transfer to the refrigerant and net heat transfer to the reservoir at 50° C; (ii) Reconsider (i) given that the efficiency of the heat engine and the C.O.P. of the refrigerator are each 45 percent of their maximum possible values.	L5

www.FirstRanker.com

www.FirstRanker.com

	OR	
5.	A fluid undergoes a reversible adiabatic compression from 4 bar, 0.3m ³ to 0.08m ³	L5
	according to the law, $pv^{1.25} = constant$. Determine: (i) change in enthalpy; (ii) change in	
	internal energy; (iii) change in entropy; (iv) heat transfer; (v) work transfer.	
6.	Steam at a pressure of 5 bar passes in to a tank containing water where it gets condensed.	L4
	The mass and temperature in the tank before the admission of steam are 50kg and 20° C	
	respectively. Examine the dryness fraction of steam as it enters the tank if 3kg of steam	
	gets condensed and resulting temperature of the mixture becomes 40° C. Take water	
	equivalent of tank as 1.5kg.	
	OR	
7.	Determine the pressure exerted by CO ₂ in a container of 1.5m ³ capacity when it contains	L5
	5kg at 27°C. (a) Using ideal gas equation (b) Using Vander Wall's equation.	
8.	Prove that the molar analysis is identical with volumetric analysis, and both are equal to	L3
	the ratio of the partial pressure to the total pressure.	
	OR	
9.	A vessel of 0.35m ³ capacity contains 0.4kg of carbon monoxide (molecular weight = 28)	L5
	and 1kg of air at 20 ^o C. Determine: (i) The partial pressure of each constituent (ii) The	
	total pressure in the vessel.	
l0.a)	Explain the significance of Psychrometric charts.	L2
b)	Derive an expression for air standard efficiency of otto cycle.	L3
	OR	
1.a)	Explain the mean effective pressure of diesel cycle.	L2
b)	The compression ratio in an air standard otto cyce 98. At the beginning of compression	L3
	process the pressure is 1 bar and the temperature is 300K. The heat transfer to the air per	
	cycle is 1900kj/kg of air. Solve the following	
	(a) The pressure and temperature at the ord of each process of the cycle.	
	 (a) The pressure and temperature at the order of each process of the cycle. (b) Thermal efficiency (c) The mean effective pressure. 	