Code No: ME404ES
 JAWAHARLAL NEHRU TECHINOLOGICAL UNIVERSITY HIYIDERABAD B.Tech II Year II Semester Examinations, 2019 THERMODYNAMICS

Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit.

PART A (25 Marks)		
Q.No	Question	Bloom's Level
1.a)	Define intensive and extensive property.	L1
b)	Explain the concept of thermodynamic equilibrium?	L2
c)	Define Heat engine and Heat pump.	L1
d)	Explain the limitations of First law of thermodynamics.	L2
e)	Explain the similarities between work and heat.	L2
f)	Demonstrate work done equation for non flow reversible constant pressure process.	L2
g)	Define mole fraction and volume fraction of a gas constituent in a mixture.	L1
h)	Explain Dalton's Law of partial pressure.	L2
i)	Outline P-V and T-S diagrams of diesel cycle.	L2
j)	Explain mean effective pressure of otto cycle.	L2
PART B 50 Narks)		
2.	$0.2 \mathrm{~m}^{3}$ of air at 4 bar and $130^{\circ} \mathrm{C}$ is क्ntained in a system. A reversible adiabatic expansion takes place till the pressurfls to 1.02 bar. The gas is then heated at constant pressure till enthalpy increases bye.5 KJ. Solve: (i) The work done (ii) The index of expansion, if the above procs giving the same work betwern the same initial and final states.	L3
OR		
3.	A platinum wire is unde as a resistance thermometer. The wire resistance was found to be 10Ω and 16Ω at ice and steam points respectively and 30Ω at sulphur boiling point $444.6^{\circ} \mathrm{C}$. Solve the constants a and b in the equation. $\mathrm{R}=\mathrm{R}_{\mathrm{O}}\left(1+\mathrm{aT}+\mathrm{bT}^{2}\right) .$ Where T is in ${ }^{0} \mathrm{C}$. Also find the resistance of wire at $500^{\circ} \mathrm{C}$.	L3
4.	A reversible heat engine operates between two reservoirs at temperature $700^{\circ} \mathrm{C}$ and 50° C. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of $50^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$. The heat transfer to the engine is 2500 KJ and the net work output of the combined engine refrigerator plant is 400 KJ . (i) Determine the heat transfer to the refrigerant and net heat transfer to the reservoir at $50^{\circ} \mathrm{C}$; (ii) Reconsider (i) given that the efficiency of the heat engine and the C.O.P. of the refrigerator are each 45 percent of their maximum possible values.	L5

OR		
5.	A fluid undergoes a reversible adiabatic compression from 4 bar, $0.3 \mathrm{~m}^{3}$ to $0.08 \mathrm{~m}^{3}$ according to the law, $\mathrm{pv}^{1.25}=$ constant. Determine: (i) change in enthalpy; (ii) change in internal energy; (iii) change in entropy; (iv) heat transfer; (v) work transfer.	L5
6.	Steam at a pressure of 5 bar passes in to a tank containing water where it gets condensed. The mass and temperature in the tank before the admission of steam are 50 kg and $20^{\circ} \mathrm{C}$ respectively. Examine the dryness fraction of steam as it enters the tank if 3 kg of steam gets condensed and resulting temperature of the mixture becomes $40^{\circ} \mathrm{C}$. Take water equivalent of tank as 1.5 kg .	L4
OR		
7.	Determine the pressure exerted by CO_{2} in a container of $1.5 \mathrm{~m}^{3}$ capacity when it contains 5 kg at $27^{\circ} \mathrm{C}$. (a) Using ideal gas equation (b) Using Vander Wall's equation.	L5
8.	Prove that the molar analysis is identical with volumetric analysis, and both are equal to the ratio of the partial pressure to the total pressure.	L3
OR		
9.	A vessel of $0.35 \mathrm{~m}^{3}$ capacity contains 0.4 kg of carbon monoxide (molecular weight $=28$) and 1 kg of air at $20^{\circ} \mathrm{C}$. Determine: (i) The partial pressure of each constituent (ii) The total pressure in the vessel.	L5
10.a)	Explain the significance of Psychrometric charts.	L2
b)	Derive an expression for air standard efficiency of otto cycle.	L3
OR		
11.a)	Explain the mean effective pressure of diesel cycle.	L2
b)	The compression ratio in an air standard otto cyce8. At the beginning of compression process the pressure is 1 bar and the temperather 300 K . The heat transfer to the air per cycle is $1900 \mathrm{kj} / \mathrm{kg}$ of air. Solve the followns (a) The pressure and temperature at therg of each process of the cycle. (b) Thermal efficiency (c) The mean effective pressure.	L3

