JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year I Semester Examinations, May/June - 2019
 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE, IT)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A

(25 Marks)
1.a) In what way a time complexity differs from space complexity. [2]
b) Give the general plan of divide and conquer algorithms. . [3]
c) Write an algorithm for collapsing find. [2]
d) Define Backtracking? List the applications of Backtracking [3]
e) What is the importance of knapsack algorithm in our daily life? [2]
f) Write Control Abstraction of Greedy method. [3]
g) What you mean by dynamic programming. [2]
h) Define optimal binary search tree with an example. [3]
i) State the difference between FIFO and LC Branch and Bound algorithms. [2]
j) Write the Control Abstraction of Least - Cost Branch and Bound. [3]

PART - B

(50 Marks)
2.a) What are the different mathematical notations used for algorithm analysis.
b) Write Divide - And - Conquer recursive Quick sort algorithm and analyze the algorithm for average time complexity.

OR
3. Write Randomized algorithm of Quicksort.
4. Write an algorithm to determine the Hamiltonian cycle in a given graph using backtracking.
[10]
OR
5. Explain the AND/OR graph problem with an example.
6.a) Explain the Knapsack problem with an example.
b) Write a greedy algorithm for sequencing unit time jobs with deadlines and profits.

OR

7. State the Job - Sequencing with deadlines problem. Find an optimal sequence to the $\mathrm{n}=5$ Jobs where profits (P1, P2, P3, P4, P5) $=(20,15,10,5,1)$ and deadlines $(\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4, \mathrm{~d} 5)=(2,2,1,3,3)$.
[10]
8. Draw an Optimal Binary Search Tree for $\mathrm{n}=4$ identifiers $(\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4)=($ do, if, read, while) $\mathrm{P}(1: 4)=(3,3,1,1)$ and $\mathrm{Q}(0: 4)=(2,3,1,1,1)$.

OR

9. Explain how Matrix - chain Multiplication problem can be solved using dynamic programming with suitable example.
10. Solve the Travelling Salesman problem using branch and bound algorithms.

OR

11. Explain the FIFO BB 0/1 Knapsack problem procedure with the knapsack instance for $\mathrm{n}=4, \mathrm{~m}=15,(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=(10,10,12,18),(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(2,4,6,9)$. Draw the portion of the state space tree and find optimal solution.
