Code No: 136FC
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech III Year II Semester Examinations, May - 2019 FUNDAMENTALS OF ROBOTICS (Common to CE, EEE, ECE, CSE, AE)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A

(25 Marks)
1.a) What controlled systems are involved in a robotic industry. [2]
b) What are the different notation scheme in designing the robot configurations. [3]
c) How tools can be used as end effectors. [2]
d) How the linkage actuation determines the finger opening and closing activity. [3]
e) What is homogeneous transformation matrix? [2]
f) The x and y position of the end of the arm in world space by defining a for link 1 and another for link 2 of a 2 DOF arm in inverse transformation. [3]
g) How the interaction control is used to control the robot motions. [2]
h) Briefly explain the blending scheme in trajectory planning. [3]
i) What is the function of VAL in robot textual language? [2]
j) What is the meant by training the vision system. [3]

PART - B

(50 Marks)
2.a) Differentiate serial and paralleel manipulator.
b) Explain the constructional features and range of any two proximity sensors. [5+5]

OR

3.a) How the correct accuracy, repeatability and resolution enhance the properties performed by a robot.
b) Explain the principle for potentiometer and encoder as position sensors.
4.a) What is physical constriction method of finger design.
b) State the principle adopted in vacuum cup gripper and its applications.

OR

5.a) Analyze the gripper force to be used in various linkage mechanisms.
b) How the grippers are selected based on the applications.
6.a) What are the three basic rules on the basis of which DH matrix is established.
b) Determine the rotation matrix that represents a rotation of 60° about OZ axis, followed by rotation of 30° about OY axis, followed by rotation of 45° about OX axis. [5+5] OR
7. Express the inverse transform technique for Euler angles solution upto inconsistent solution.
[10]
8. Formulate joint trajectories in 5 cubic trajectory segments with time varying from 0 to 1 units with appropriate cubic spline functions.

OR

9.a) Explain the cubic polynomial fit via point for a smooth trajectory.
b) How the servo system is established for robotic control.
10.a) Describe the various parameters considered in image data reduction and feature extraction in machine vision.
b) Explain how the end effector and sensor commands are executed?

OR
11.a) How the robot language is structured?
b) What are the various motion commands used for robot's movement?

