

www.FirstRanker.com

www.FirstRanker.com

R16

Max. Marks: 75

(25 Marks)

Code No: 136AQ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, May - 2019 COMPILER DESIGN (Common to CSE, IT)

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

1.a) b) c) d) e) f)	Define regular expression. Define linker and loader and explain briefly. Define ambiguous grammar. Compare SLR, CLR and LACR. What is coercion? How to find evaluation order for SDD's?	[2] [3] [2] [3] [2] [3]		
r) g)	What are the limitations of static allocation?	[2]		
h	Write the fields and uses of symbol table.	[3]		
i)	What is common sub-expression elimination? Explain.	[2]		
i)	What are induction variables? What is induction variable elimination?	[3]		
J/		[-]		
PART - B				
	R'a.	(50 Marks)		
2.a)	Explain the procedure to convert regular expression to Finite automata.			
b)	Explain various phases in the construction of compiler with a neat sketch. OR	[5+5]		
3.a)	What is the functionality of preprocessing and input buffering?			
b)	Explain compiler construction tools.	[5+5]		
4.a)	What is left recursion? Describe the algorithm used for eliminating left recur	sion?		
b)	Eliminate left recursion in the following:	[5+5]		
,	$E \rightarrow E + T T, T \rightarrow T^*F F, F \rightarrow (E) id$			
OR				
5.a)	What is ambiguous grammar? Show that following grammar is ambiguous o	r not.		
1 \	$A \rightarrow A + A \mid A - A \mid A^* A \mid a$	[[] . []		
D)	verify whether the following grammar is $LL(1)$ or not?	[3+3]		
	$\mathbf{E} \overline{\mathbf{Z}} \mathbf{E} + \mathbf{I} \mathbf{I}$ $\mathbf{T} \mathbf{\Delta} \mathbf{T} * \mathbf{E} / \mathbf{E}$			
	$1 \neq 1 \cdot \Gamma / \Gamma$ $E \rightarrow (E) _{0} _{b}$			
	$\Gamma \nearrow (\Gamma) a 0.$			

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

6.a)	What are three address codes? Explain different types of representations of address code	three
b)	Write three codes for $x := A[y, z]$	[5+5]
,	OR	
7.a) b)	What is type checker? Explain the specification of a simple type checker. Explain translation schema for array elements.	[5+5]
8.a) b)	Explain about Heap management. Define reference counting. What is the role of reference counting in garbage collectors	ction? [5+5]
9.a)	Give the detailed description on DAG	
b)	Explain different methods for register allocation and assignment.	[5+5]
10.a) b)	Explain redundancy elimination techniques. Write the principal sources of optimization. OR	[5+5]
11.a)	Explain loop optimization technique with example.	
b)	Explain constant propagation with example.	[5+5]
	con con FirstRanker	

www.FirstRanker.com