

www.FirstRanker.com

www.FirstRanker.com

Code No: 136BW JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, May - 2019 FINITE ELEMENT METHODS (Common to ME, AE, MSNT)

(Common to ME, AE, MSNT)

Max. Marks: 75

Time: 3 hours

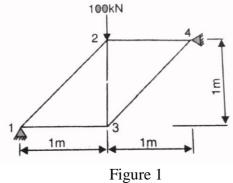
Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

1.a) Write the temperature load vector in the matrix form of a one dimensional bar element.

		[2]
b)	How the order of the assembled global stiffness matrix is decided?	[3]
c)	What is force transformation matrix in a truss element?	[2]
d)	What assumptions are made in classical beam theory?	[3]
e)	Differentiate LST and CST Element.	[2]
f)	What are non zero stress components of axisymmetric element.	[3]
g)	Write the governing equation and the functions used into determine the	shearing
	stresses.	[2]
h)	What are the various boundary conditions of heat convection to take place?	[3]
i)	Describe the features of NASTRAN software.	[2]
j)	What are the convergence requirements of a finite element model?	[3]

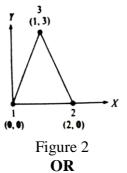

PART - B

(50 Marks)

2. Derive finite element equation using galerkins method for one dimensional bar element. [10]

OR

- 3. Derive the element stiffness matrix for a one dimensional quadratic element. [10]
- 4. Determine the nodal displacement of the following figure 1. [10]


5. Determine the shear forces and bending moments for the cantilever beam having length

www.FirstRanker.com

FirstRanker.com

www.FirstRanker.com

6. Derive the element stiffness matrix for triangular element and thus find the matrix element for the triangular element as shown in figure 2. [10]

7. Derive the element stiffness matrix for the following axisymmetric ring of triangular cross section (figure 3). [10]

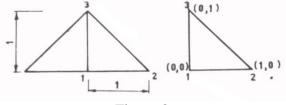


Figure 3

- 8. Derive the element stiffness matrix of a thin plate. [10]
- 9. Derive the stiffness matrix for heat flow in a rectangular fin, where k, h and P denotes thermal conductivity, convective heat coefficient and perimeter of fin and A is area of cross section of fin. [10]
- 10. Find the natural frequency of the following truss bar (figure 4). [10]

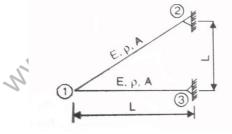


Figure 4 OR

11. Draw the mode shapes of the following stepped bar. Take E= 200 GPa, specific weight 7850 kg/m³. Take $A_1 = 400$ mm², and $A_2=200$ mm² (figure 5). [10]

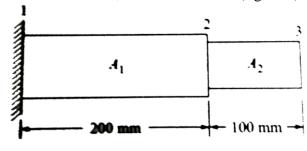


Figure 5

www.FirstRanker.com