

Code No:127CJ

R15

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech IV Year I Semester Examinations, May/June - 2019 DIGITAL IMAGE PROCESSING

(Electronics and Communication Engineering)

Time: 3 Hours Max.Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

		(23 IVIAI KS)
1.a)	How to represent the image?	[2]
b)	What is 4-, 8-, m- connectivity?	[3]
c)	What is High boost High pass filter?	[2]
d)	Compare linear and nonlinear gray level transformations.	[3]
e)	What are the advantages of Restoration?	[2]
f)	What are the different sources of degradation?	[3]
g)	What is erosion?	[2]
h)	How discontinuity property is used in image segmentation?	[3]
i)	What is mean by redundancy?	[2]
j)	What is fidelity? How it is used in image processing?	[3]

PART-B

(50 Marks)

(25 Marks)

- 2.a) How to sample the image and how it differ from signal sampling?
 - b) Explore the relationship between pixels.

[4+6]

[5+5]

- 3.a) Define 2-D DFT and prove its convolution property and also write its applications.
 - b) Derive the 8×8 Slant transform matrix and write its order of sequence.
- 4.a) Explain local enhancement techniques and compare it with global enhancement techniques.
- b) Explain Histogram equalization method with example.

[5+5]

OR

5.a) Consider the following image segment x and enhance it using the equation y = k x where k is constant and y is output image.

0	1	2	3	4	5	6	7
54	35	64	53	123	43	56	45

b) Explain how low pass filter is used to enhance the image in frequency domain? [5+5]

www.FirstRanker.com

www.FirstRanker.com

[10]

6.a)	Explain how image restoration improves the quality of image.	
b)	What is inverse filter? How it is used for image restoration?	[5+5]
	OR	
7.a)	How wiener filter is used for image restoration? What are the limitations of it?	
b)	What are the applications of restoration?	[6+4]
8.a)	How edge linking process is used to segment the image?	
b)	How to choose the threshold value while segmenting the image?	[5+5]
	OR	
9.a)	What are necessary condition to apply region based segmentation?	
b)	What is mean by Hit and Miss morphological operation? Write some example.	[5+5]

- 10. Suppose the alphabet is [A, B,C], and the known probability distribution is $P_A = 0.5$, P_B = 0.4, P_c = 0.1. For simplicity, let's also assume that bothencoder and decoder know that the length of the messages is always 3, so there is no need for a terminator.
 - a) How many bits are needed to encode the message BBB by Huffmancoding?
 - b) How many bits are needed to encode the message BBB by arithmetic coding?
 - c) Analyze and compare the results of (a) and (b).

- 11.a) Draw the general block diagram of compression modal and explain the significance of each block.
 - b) Explain the loss-less prediction code for image compression with neat diagrams and equations. [5+5]--odoo--