JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech IV Year II Semester Examinations, May - 2019
 EHV AC TRANSMISSION
 (Electrical and Electronics Engineering)

Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A

(25 Marks)
1.a) What is the necessity of EHV AC Transmission?
b) Derive the expression for equivalent radius of a bundle conductor. [3]
c) Write the charge potential relation of a multi conductor line. [2]
d) Derive the cosine law of variation of ' E ' with ' θ '. [3]
e) What is Corona? [2]
f) Draw Bode frequency plot of positive and negative corona pulses. [3]
g) Write short notes on travelling waves in EHV.A.C lines. [2]
h) An overhead line with $\mathrm{Z}_{0}=500$ ohms continues into a cable with $\mathrm{Z}_{\mathrm{c}}=200$ ohms. A surge with a crest value of 2000 kV is coming towards the junction from the overhead line. Calculate the voltage in the cable.
i) Write short notes on Static Reactive compensating system.
j) Draw the diagram showing extra long line with shunt reactors at ends and at an intermediate station.

PART - B

(50 Marks)
2. The dimensions of the 3-phase, 400 kV horizontal line shown in the figure are $\mathrm{H}=15 \mathrm{~m}, \mathrm{~S}=11 \mathrm{~m}$ phase separation, Conductor is $2 \times 3.18 \mathrm{~cm}$ diameter, Bundle spacing $\mathrm{B}=45.72 \mathrm{~cm}$. Calculate the matrix of inductance per km for transposed and un transposed lines.

3. Write down the procedure for diagonalization of Inductance matrix $\mathrm{L}=\left[\begin{array}{lll}L_{S} & L_{m} & L_{m} \\ L_{m} & L_{S} & L_{m} \\ L_{m} & L_{m} & L_{S}\end{array}\right]$ of a transposed line.
4. Derive the expression for voltage (charge voltage relation) of two conductor line. [10] OR
5. Starting from the fundamentals derive the expression for potential relations for multi conductor lines.
6.a) Explain in detail generation characteristics and limits of AN.
b) Discuss the Corona loss formulae.
7.a) Explain in detail the measurement of Audible Noise.
b) Explain the corona pulses, their generation and properties.
8. Derive the expression for total electrostatic field component of a 3-phase, single circuit AC line.
9. Derive the expressions for induced voltages in the un energized line when only one circuit is energized in the double circuit line.
10.a) Explain cascade connection of components inshunt and series compensation.
b) Explain the power circle diagram and its usé in voltage control.

OR

11.a) Explain the voltage control using synchronous condenser.
b) Explain the sub synchronous resonanee in a series capacitor.

