

R16 B.TECH MECHANICAL ENGG.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.TECH. MECHANICAL ENGINEERING III YEAR COURSE STRUCTURE & SYLLABUS (R16)

Applicable From 2016-17 Admitted Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	ME501PC	Design of Machine Members - I	4	1	0	4
2	ME502PC	Thermal Engineering-I	4	1	0	4
3	ME503PC	Metrology and Machine Tools	4	1	0	4
4	SM504MS	Fundamentals of Management	3	0	0	3
5		Open Elective – I	3	0	0	3
6	ME505PC	Thermal Engineering Lab	0	0	3	2
7	ME506PC	Machine Tools Lab	0	0	3	2
8	ME507PC	Engineering Metrology Lab	0	0	3	2
9	*MC500HS	Professional Ethics	3	0	0	0
		Total Credits	21	3	9	24
III YEAR II SEMESTER						
	Course		Ŧ	T	n	

III YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	ME601PC	Thermal Engineering –II	4	1	0	4
2	ME602PC	Design of Machine Members-II	4	1	0	4
3	ME603PC	Heat Transfer	4	1	0	4
4		Open Elective - II	3	0	0	3
5		Professional Elective - I	3	0	0	3
6	ME604PC	Heat Transfer Lab	0	0	3	2
7	ME605PC	CADD and MATLAB	0	0	3	2
8	EN606HS	Advanced English Communication Skills Lab	0	0	3	2
		Total Credits	18	3	9	24

During Summer Vacation between III and IV Years: Industry Oriented Mini Project

R16 B.TECH MECHANICAL ENGG.

Professional Elective - I

ME611PE	Finite Element Methods
ME612PE	Refrigeration and Air Conditioning
ME613PE	Machine Tool Design
ME614PE	IC Engines and Gas Turbines

*Open Elective subjects' syllabus is provided in a separate document.

***Open Elective** – Students should take Open Electives from the List of Open Electives Offered by Other Departments/Branches Only.

Ex: - A Student of Mechanical Engineering can take Open Electives from all other departments/branches except Open Electives offered by Mechanical Engineering Dept.

www.FirstRanker.com

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

DESIGN OF MACHINE MEMBERS - I

B.Tech. III Year I Sem.	L	T/P/D C
Course Code: ME501PC	4	1/0/0 4

Note: Design Data books are not permitted in the Examinations. The design must not only satisfy strength criteria but also rigidity criteria.

Pre-requisites: Engineering mechanics, mechanics of solids, manufacturing processes, metallurgy and material science.

Course Objectives:

- To understand the general design procedures and principles in the design of machine elements.
- To study different materials of construction and their properties and factors determining the selection of material for various applications.
- To determine stresses under different loading conditions.
- To learn the design procedure of different fasteners, joints, shafts and couplings.

Course Outcomes:

- The student acquires the knowledge about the principles of design, material selection, component behavior subjected to loads, and criteria of failure.
- Understands the concepts of principal stresses, stress concentration in machine members and fatigue loading.
- Design on the basis of strength and rigidity and analyze the stresses and strains induced in a machine element.

UNIT – I

Introduction: General considerations in the design of Engineering Materials and their properties – selection –Manufacturing consideration in design. Tolerances and fits –BIS codes of steels.

Design for Static Strength: Simple stresses – Combined stresses – Torsional and Bending stresses – Impact stresses – Stress strain relation – Various theories of failure – Factor of safety – Design for strength and rigidity – preferred numbers. The concept of stiffness in tension, bending, torsion and combined situations.

UNIT – II

Design for Fatigue Strength: Stress concentration–Theoretical stress Concentration factor– Fatigue stress concentration factor- Notch Sensitivity – Design for fluctuating stresses – Endurance limit – Estimation of Endurance strength – Gerber's curve– Modified Goodman's line– Soderberg's line.

R16 B.TECH MECHANICAL ENGG.

UNIT – III

Riveted, Welded and Bolted Joints: Riveted joints- methods of failure of riveted jointsstrength equations-efficiency of riveted joints-eccentrically loaded riveted joints.

Welded joints-Design of fillet welds-axial loads-circular fillet welds under bending, torsion. Welded joints under eccentric loading.

Bolted joints – Design of bolts with pre-stresses – Design of joints under eccentric loading – locking devices – bolts of uniform strength.

$\mathbf{UNIT} - \mathbf{IV}$

Keys, Cotters and Knuckle Joints: Design of keys-stresses in keys-cottered joints-spigot and socket, sleeve and cotter, jib and cotter joints-Knuckle joints.

UNIT – V

Shafts: Design of solid and hollow shafts for strength and rigidity – Design of shafts for combined bending and axial loads – Shaft sizes – BIS code. Use of internal and external circlips, Gaskets and seals (stationary & rotary)

Shaft Couplings: Rigid couplings – Muff, Split muff and Flange couplings. Flexible couplings – Flange coupling (Modified).

TEXT BOOKS:

- 1. Design of Machine Elements / V. Bhandari / Mc Graw Hill
- 2. Machine Design / Jindal / Pearson

REFERENCE BOOKS:

- 1. Design of Machine Elements / V. M. Faires / Macmillan
- 2. Design of Machine Elements-I/ Annaiah, M.H / New Age

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

THERMAL ENGINEERING – I

B.Tech. III Year I Sem. Course Code: ME502PC L T/P/D C 4 1/0/0 4

Pre-requisite: Thermodynamics

Course Objective: To apply the laws of Thermodynamics to analyze air standard cycles and to understand and evaluate the perform analysis of the major components and systems of IC engines, refrigeration cycles and their applications.

Course Outcomes: At the end of the course, the student should be able to evaluate the performance of IC engines and compressors under the given operating conditions. Apply the laws of Thermodynamics to evaluate the performance of Refrigeration and air-conditioning cycles. Understand the functionality of the major components of the IC Engines and effects of operating conditions on their performance

UNIT – I

I.C. Engines: Classification - Working principles of Four & Two stroke engine, SI & CI engines, Valve and Port Timing Diagrams, Air – Standard, air-fuel and actual cycles - Engine systems – Carburetor and Fuel Injection Systems for SI engines, Fuel injection systems for CI engines, Ignition, Cooling and Lubrication system, Fuel properties and Combustion Stoichiometry.

UNIT – II

Normal Combustion and abnormal combustion in SI engines – Importance of flame speed and effect of engine variables – Abnormal combustion, pre-ignition and knocking in SI Engines – Fuel requirements and fuel rating, anti knock additives – combustion chamber – requirements, types of SI engines.

Four stages of combustion in CI engines – Delay period and its importance – Effect of engine variables – Diesel Knock– Need for air movement, suction, compression and combustion induced turbulence in Diesel engine – open and divided combustion chambers and fuel injection– Diesel fuel requirements and fuel rating

UNIT - III

Testing and Performance: Parameters of performance - measurement of cylinder pressure, fuel consumption, air intake, exhaust gas composition, Brake power – Determination of frictional losses and indicated power – Performance test – Heat balance sheet and chart

Classification of compressors – Fans, blowers and compressors – positive displacement and dynamic types – reciprocating and rotary types.

Reciprocating Compressors: Principle of operation, work required, Isothermal efficiency volumetric efficiency and effect of clearance volume, staged compression, under cooling, saving of work, minimum work condition for staged compression

R16 B.TECH MECHANICAL ENGG.

UNIT – IV

Rotary Compressor (Positive displacement type): Roots Blower, vane sealed compressor, Lysholm compressor – mechanical details and principle of working – efficiency considerations.

Dynamic Compressors: Centrifugal compressors: Mechanical details and principle of operation – velocity and pressure variation. Energy transfer-impeller blade shape-losses, slip factor, power input factor, pressure coefficient and adiabatic coefficient – velocity diagrams – power.

Axial Flow Compressors: Mechanical details and principle of operation – velocity triangles and energy transfer per stage degree of reaction, work done factor - isentropic efficiency-pressure rise calculations – Polytropic efficiency.

UNIT – V

Refrigeration: Mechanical Refrigeration and types – units of refrigeration – Air Refrigeration system, details and principle of operation – applications of air refrigeration, Vapour compression refrigeration systems – calculation of COP – effect of superheating and sub cooling, desired properties of refrigerants and common refrigerants- Vapour absorption system – mechanical details – working principle, Use of p-h charts for calculations

Air-Conditioning: Concepts of Psychrometry – Properties of moist air – Usage of Psychrometric Chart – Calculation of moist air properties.

Types of air - conditioning systems - Requirements - schematic layout of a typical plant.

TEXT BOOKS:

- 1. I.C. Engines / V. Ganesan / Mc Graw Hill
- 2. Thermal Engineering / Mahesh M Rathore / Mc Graw Hill

REFERENCE BOOKS:

- 1. Applied Thermodynamics for Engineering Technologists / Eastop / Pearson
- 2. Fundamentals of Classical Thermodynamics / Vanwylen G.J., Sonntag R.E. / Wiley Eastern

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

METROLOGY AND MACHINE TOOLS

B.Tech. III Year I Sem.	L	T/P/D C
Course Code: ME503PC	4	1/0/0 4

Pre-requisites: None

Course Objectives: The course content enables students to:

- Acquire the knowledge of Engineering metrology and its practice which is having increasing importance in industry.
- Specifically makes the student to improve applications aspect in the measurements and control of process of manufacture
- Impart the fundamental aspects of the metal cutting principles and their application in studying the behavior of various machining processes.
- Train in knowing the fundamental parts of various machine tools and their kinematic schemes.
- Discuss various principles of jigs and fixtures which will be used hold the work pieces in various machine tools

Course Outcome: At the end of the course, the student would be able to

- Identify techniques to minimize the errors in measurement.
- Identify methods and devices for measurement of length, angle, gear & thread parameters, surface roughness and geometric features of parts.
- Understand working of lathe, shaper, planer, drilling, milling and grinding machines.
- Comprehend speed and feed mechanisms of machine tools.
- Estimate machining times for machining operations on machine tools

UNIT – I

Metal cutting: Introduction, elements of cutting process – Geometry of single point tools. Chip formation and types of chips. Engine lathe – Principle of working, types of lathe, specifications. Taper turning, – Lathe attachments. Capstan and Turret lathe – Single spindle and multi-spindle automatic lathes – tool layouts.

UNIT – II

Drilling and Boring Machines – Principles of working, specifications, types, operations performed; twist drill. Types of Boring machines and applications. Shaping, slotting and planing machines –Principles of working – machining time calculations.

UNIT – III

Milling machines – Principles of working – Types of milling machines – Geometry of milling cutters methods of indexing. Grinding – theory of grinding – classification of grinding machines. Types of abrasives, bonds. Selection of a grinding wheel. Lapping, honing and broaching machines, comparison and Constructional features, machining time calculations

R16 B.TECH MECHANICAL ENGG.

UNIT – IV

Limits, fits and tolerances- Unilateral and bilateral tolerance system, hole and shaft basis system. Interchangeability and selective assembly.

Limit Gauges: Taylor's principle, Design of GO and NO GO gauges Measurement of angles, Bevel protractor, and Sine bar. Measurement of flat surfaces, straight edges, surface plates, optical flat and auto collimator.

UNIT – V

Surface Roughness Measurement: Roughness, Waviness. CLA, RMS, Rz Values. Methods of measurement of surface finish, Talysurf. Screw thread measurement, Gear measurement; Machine Tool Alignment Tests on lathe, milling and drilling machines. Coordinate Measuring Machines: Types and Applications of CMM.

TEXT BOOKS:

- 1. Machine Tool Practices/ Kibbe, Johne. Neely, T. White, Rolando O. Meyer/ Pearson
- 2. Fundamentals of Metal Machining and Machine Tools / Geoffrey Boothroyd / McGraw Hill.

REFERENCE BOOKS:

- 1. Principles of Machine Tools, Bhattacharyya A and Sen.G.C / New Central Book Agency.
- 2. Fundamentals of Dimensional Metrology / Connie Dotson / Thomson

www.firstRanker.on

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

FUNDAMENTALS OF MANAGEMENT

B.Tech. III Year I Sem.	L	T/P/D C
Course Code: SM504MS	3	0/0/0 3

Course Objective: To understand the Management Concepts, applications of Concepts in Practical aspects of business and development of Managerial Skills.

Course Outcome: The students understand the significance of Management in their Profession. The various Management Functions like Planning, Organizing, Staffing, Leading, Motivation and Control aspects are learnt in this course. The students can explore the Management Practices in their domain area.

UNIT - I

Introduction to Management: Definition, Nature and Scope, Functions, Managerial Roles, Levels of Management, Managerial Skills, Challenges of Management; Evolution of Management- Classical Approach- Scientific and Administrative Management; The Behavioral approach; The Quantitative approach; The Systems Approach; Contingency Approach, IT Approach.

UNIT - II

Planning and Decision Making: General Framework for Planning - Planning Process, Types of Plans, Management by Objectives; Development of Business Strategy. Decision making and Problem Solving - Programmed and Non Programmed Decisions, Steps in Problem Solving and Decision Making; Bounded Rationality and Influences on Decision Making; Group Problem Solving and Decision Making, Creativity and Innovation in Managerial Work.

UNIT - III

Organization and HRM: Principles of Organization: Organizational Design & Organizational Structures; Departmentalization, Delegation; Empowerment, Centralization, Decentralization, Recentralization; Organizational Culture; Organizational Climate and Organizational Change.

Human Resource Management & Business Strategy: Talent Management, Talent Management Models and Strategic Human Resource Planning; Recruitment and Selection; Training and Development; Performance Appraisal.

UNIT - IV

Leading and Motivation: Leadership, Power and Authority, Leadership Styles; Behavioral Leadership, Situational Leadership, Leadership Skills, Leader as Mentor and Coach, Leadership during adversity and Crisis; Handling Employee and Customer Complaints, Team Leadership.

R16 B.TECH MECHANICAL ENGG.

Motivation - Types of Motivation; Relationship between Motivation, Performance and Engagement, Content Motivational Theories - Needs Hierarchy Theory, Two Factor Theory, Theory X and Theory Y.

UNIT - V

Controlling: Control, Types and Strategies for Control, Steps in Control Process, Budgetary and Non-Budgetary Controls. Characteristics of Effective Controls, Establishing control systems, Control frequency and Methods.

TEXT BOOKS:

- 1. Management Fundamentals, Robert N Lussier, 5e, Cengage Learning, 2013.
- 2. Fundamentals of Management, Stephen P. Robbins, Pearson Education, 2009.

REFERENCES:

- 1. Essentials of Management, Koontz Kleihrich, Tata McGraw HilL.
- 2. Management Essentials, Andrew DuBrin, 9e, Cengage Learning, 2012.

www.FirstRanker.com

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

THERMAL ENGINEERING LAB

B.Tech. III Year I Sem. **Course Code: ME505PC** L T/P/D C 0/3/0 2 0

Pre-Requisite: Thermodynamics & Thermal Engineering - I

Objective: To understand the working principles of IC Engines, Compressors.

List of Experiments

- 1. I.C. Engines Valve / Port Timing Diagrams
- 2. I.C. Engines Performance Test for 4 Stroke SI engines
- 3. I.C. Engines Performance Test for 2 Stroke SI engines
- 4. I.C. Engines Morse, Retardation, Motoring Tests
- 5. I.C. Engine Heat Balance CI/SI Engines
- 6. I.C. Engines Economical speed Test on a SI engine
- 7. I.C. Engines effect of A/F Ratio in a SI engine
- 8. Performance Test on Variable Compression Ratio Engine
- 9. IC engine Performance Test on a 4S CI Engine at constant speed
- 10. Volumetric efficiency of Air Compressor Unit
- www.FirstRanker.com 11. Dis-assembly / Assembly of Engines
- 12. Study of Boilers

Perform any 10 out of the 12 Exercises.

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

MACHINE TOOLS LAB

B.Tech. III Year I Sem.	L	T/P/D	С
Course Code: ME506PC	0	0/3/0	2

Objectives:

- To import practical exposure to the Machine tools •
- To conduct experiments and understand the working of the same. •

List of Experiments:

- 1. Introduction of general purpose machines -Lathe, Drilling machine, Milling machine, Shaper,
- 2. Planing machine, slotting machine, Cylindrical Grinder, surface grinder and tool and cutter grinder.
- 3. Step turning and taper turning on lathe machine
- 4. Thread cutting and knurling on -lathe machine.
- 5. Drilling and Tapping
- 6. Shaping and Planning
- 7. Slotting
- 8. Milling
- www.FirstRanker.com 9. Cylindrical Surface Grinding
- 10. Grinding of Tool angles.

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

ENGINEERING METROLOGY LAB

B.Tech. III Year I Sem.	L	T/P/D C
Course Code: ME507PC	0	0/3/0 2

Objectives:

- To import practical exposure to the metrology equipment
- To conduct experiments and understand the working of the same.

Prerequisites: Theoretical exposure to Metrology and machine tools.

- 1. Use of gear teeth vernier calipers for checking the chordal addendum and chordal height of the spur gear.
- 2. Machine tool alignment of test on the lathe.
- 3. Tool makers microscope and its application
- 4. Angle and taper measurements by bevel protractor and sine bars.
- 5. Use of spirit level and optical flats in finding the flatness of surface plate.
- 6. Thread measurement by 2-wire and 3-wire methods.

www.FirstRanker.com

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

PROFESSIONAL ETHICS

B.Tech. III Year I Sem.	L	T/P/D C
Course Code: MC500HS	3	0/0/0 0

Course Objective: To enable the students to imbibe and internalize the Values and Ethical Behaviour in the personal and Professional lives.

Course Outcome: The students will understand the importance of Values and Ethics in their personal lives and professional careers. The students will learn the rights and responsibilities as an employee, team member and a global citizen.

UNIT - I

Introduction to Professional Ethics: Basic Concepts, Governing Ethics, Personal & Professional Ethics, Ethical Dilemmas, Life Skills, Emotional Intelligence, Thoughts of Ethics, Value Education, Dimensions of Ethics, Profession and professionalism, Professional Associations, Professional Risks, Professional Accountabilities, Professional Success, Ethics and Profession.

UNIT - II

Basic Theories: Basic Ethical Principles, Moral Developments, Deontology, Utilitarianism, Virtue Theory, Rights Theory, Casuist Theory, Moral Absolution, Moral Rationalism, Moral Pluralism, Ethical Egoism, Feminist Consequentialism, Moral Issues, Moral Dilemmas, Moral Autonomy.

UNIT - III

Professional Practices in Engineering: Professions and Norms of Professional Conduct, Norms of Professional Conduct vs. Profession; Responsibilities, Obligations and Moral Values in Professional Ethics, Professional codes of ethics, the limits of predictability and responsibilities of the engineering profession.

Central Responsibilities of Engineers - The Centrality of Responsibilities of Professional Ethics; lessons from 1979 American Airlines DC-10 Crash and Kansas City Hyatt Regency Walkaway Collapse.

UNIT - IV

Work Place Rights & Responsibilities, Ethics in changing domains of Research, Engineers and Managers; Organizational Complaint Procedure, difference of Professional Judgment within the Nuclear Regulatory Commission (NRC), the Hanford Nuclear Reservation.

Ethics in changing domains of research - The US government wide definition of research misconduct, research misconduct distinguished from mistakes and errors, recent history of attention to research misconduct, the emerging emphasis on understanding and fostering responsible conduct, responsible authorship, reviewing & editing.

R16 B.TECH MECHANICAL ENGG.

UNIT - V

Global issues in Professional Ethics: Introduction – Current Scenario, Technology Globalization of MNCs, International Trade, World Summits, Issues, Business Ethics and Corporate Governance, Sustainable Development Ecosystem, Energy Concerns, Ozone Deflection, Pollution, Ethics in Manufacturing and Marketing, Media Ethics; War Ethics; Bio Ethics, Intellectual Property Rights.

TEXT BOOKS:

- 1. Professional Ethics: R. Subramanian, Oxford University Press, 2015.
- 2. Ethics in Engineering Practice & Research, Caroline Whitbeck, 2e, Cambridge University Press 2015.

REFERENCES:

- 1. Engineering Ethics, Concepts Cases: Charles E Harris Jr., Michael S Pritchard, Michael J Rabins, 4e, Cengage learning, 2015.
- 2. Business Ethics concepts & Cases: Manuel G Velasquez, 6e, PHI, 2008.

www.FirstRanker.com

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

THERMAL ENGINEERING - II

B.Tech. III Year II Sem. Course Code: ME601PC L T/P/D C 4 1/0/0 4

Note: Steam Table book Permitted. **Pre-requisite**: Thermodynamics

Course Objective: To apply the laws of Thermodynamics to analyze steam and gas turbine cycles and to perform analysis of the major components of steam and gas turbine plants and their applications.

Course Outcomes: At the end of the course, the student should be able to

- Develop state space diagrams based on the schematic diagrams of process flow of steam and gas turbine plants
- Apply the laws of Thermodynamics to analyze thermodynamic cycles
- Differentiate between vapour power cycles and gas power cycles
- Infer from property charts and tables and to apply the data for the evaluation of performance parameters of the steam and gas turbine plants
- Understand the functionality of major components of steam and gas turbine plants and to do the analysis of these components

UNIT – I

Steam Power Plant: Rankine cycle - Schematic layout, Thermodynamic Analysis, Concept of Mean Temperature of Heat addition, Methods to improve cycle performance – Regeneration & reheating.

Boilers – Classification – Working principles with sketches including H.P.Boilers – Mountings and Accessories – Working principles- Boiler horse power, Equivalent Evaporation, Efficiency and Heat balance – Draught- Classification – Height of chimney for given draught and discharge- Condition for maximum discharge- Efficiency of chimney.

UNIT – II

Steam Nozzles : Stagnation Properties- Function of nozzle – Applications and Types- Flow through nozzles- Thermodynamic analysis – Assumptions -Velocity of nozzle at exit-Ideal and actual expansion in nozzle- Velocity coefficient- Condition for maximum discharge-Critical pressure ratio- Criteria to decide nozzle shape- Super saturated flow, its effects, Degree of super saturation and Degree of under cooling - Wilson line.

UNIT – III

Steam Turbines: Classification – Impulse turbine; Mechanical details – Velocity diagram – Effect of friction – Power developed, Axial thrust, Blade or diagram efficiency – Condition for maximum efficiency. De-Laval Turbine - its features- Methods to reduce rotor speed-Velocity compounding and Pressure compounding- Velocity and Pressure variation along the flow – Combined velocity diagram for a velocity compounded impulse turbine.

R16 B.TECH MECHANICAL ENGG.

Reaction Turbine: Mechanical details – Principle of operation, Thermodynamic analysis of a stage, Degree of reaction –Velocity diagram – Parson's reaction turbine – Condition for maximum efficiency.

UNIT - IV

Steam Condensers: Requirements of steam condensing plant – Classification of condensers – Working principle of different types – Vacuum efficiency and Condenser efficiency – Air leakage, sources and its affects, Air pump- Cooling water requirement.

Gas Turbines: Simple gas turbine plant – Ideal cycle, essential components – Parameters of performance – Actual cycle – Regeneration, Inter cooling and Reheating –Closed and Semiclosed cycles – Merits and Demerits- Combustion chambers and turbines of Gas Turbine Plant- Brief Concepts.

UNIT – V

Jet Propulsion : Principle of Operation –Classification of jet propulsive engines – Working Principles with schematic diagrams and representation on T-S diagram - Thrust, Thrust Power and Propulsion Efficiency – Turbo jet engines – Needs and Demands met by Turbo jet – Schematic Diagram, Thermodynamic Cycle, Performance Evaluation Thrust Augmentation – Methods.

Rockets: Application – Working Principle – Classification – Propellant Type – Thrust, Propulsive Efficiency – Specific Impulse – Solid and Liquid propellant Rocket Engines.

TEXT BOOKS:

- 1. Thermal Engineering / Mahesh M Rathore/ Mc Graw Hill
- 2. Gas Turbines V.Ganesan /Mc Graw Hill

REFERENCE BOOKS:

- 1. Gas Turbine Theory/ Saravanamuttoo, Cohen, Rogers/ Pearson
- 2. Fundamentals of Engineering Thermodynamics / Rathakrishnan/ PHI

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

DESIGN OF MACHINE MEMBERS - II

B.Tech. III Year II Sem.	L	T/P/D C	
Course Code: ME602PC	4	1/0/0 4	

Note: Design Data Book is permitted. Design of all components should include design for strength and rigidity apart from engineering performance requirements.

Pre-requisites: Study of engineering mechanics, design of machine members-I and theory of machines.

Course objectives:

- To gain knowledge about designing the commonly used important machine members such as bearings, engine parts, springs, belts, gears etc.
- To design the components using the data available in design data books.

Course Outcomes:

- Knowledge about journal bearing design using different empirical relations.
- Estimation of life of rolling element bearings and their selection for given service conditions.
- Acquaintance with design of the components as per the standard, recommended procedures which is essential in design and development of machinery in industry.

UNIT – I

Sliding contact bearings: Types of Journal bearings – Lubrication – Bearing Modulus – Full and partial bearings – Clearance ratio – Heat dissipation of bearings, bearing materials – journal bearing design.

UNIT – II

Rolling contact bearings: Ball and roller bearings – Static load – dynamic load – equivalent radial load – design and selection of ball & roller bearings.

UNIT – III

Engine Parts: Connecting Rod : Thrust in connecting rod – stress due to whipping action on connecting rod ends –Pistons, Forces acting on piston – Construction, Design and proportions of piston.

$\mathbf{UNIT} - \mathbf{IV}$

Mechanical Springs: Stresses and deflections of helical springs – Extension and compression springs – Design of springs for fatigue loading – natural frequency of helical springs – Energy storage capacity – helical torsion springs – Design of co-axial springs, Design of leaf springs.

Belts & Pulleys: Transmission of power by Belt and Rope ways, Transmission efficiencies, Belts – Flat and V types – Ropes - pulleys for belt and rope drives.

R16 B.TECH MECHANICAL ENGG.

UNIT – V

Gears : Spur gears& Helical gears- Brief introduction involving important concepts – Design of gears using AGMA procedure involving Lewis and Buckingham equations. Check for wear.

TEXT BOOKS:

- 1. Design of Machine Elements / Spotts/ Pearson
- 2. Machine tool design / V. Bhandari / Mc Graw Hill

REFERENCE BOOKS:

- 1. Design of Machine Elements-II / Annaiah / New Age
- 2. Design of Machine Elements / Sharma and Purohit/PHI

www.FirstRanker.com

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

HEAT TRANSFER

B.Tech. IV Year I Sem. Course Code: ME603PC L T P C 4 1 0 4

Note: Heat Transfer Data Book is permitted. **Pre-requisite**: Thermodynamics

Course Objectives: To provide knowledge about application of conduction, convection and radiation heat transfer concepts to different practical applications

Course Outcome: At the end of this course, student will be able to

- Understand the basic modes of heat transfer
- Compute one dimensional steady state heat transfer with and without heat generation
- Understand and analyze heat transfer through extended surfaces
- Understand one dimensional transient conduction heat transfer
- Understand concepts of continuity, momentum and energy equations
- Interpret and analyze forced and free convective heat transfer
- Understand the principles of boiling, condensation and radiation heat transfer
- Design of heat exchangers using LMTD and NTU methods

UNIT – I

Introduction: Modes and mechanisms of heat transfer – Basic laws of heat transfer – General discussion about applications of heat transfer.

Conduction Heat Transfer: Fourier rate equation – General heat conduction equation in Cartesian, Cylindrical and Spherical coordinates – simplification and forms of the field equation – steady, unsteady, and periodic heat transfer – Initial and boundary conditions **One Dimensional Steady State Conduction Heat Transfer:** Homogeneous slabs, hollow cylinders, and spheres- Composite systems– overall heat transfer coefficient – Electrical analogy – Critical radius of insulation

UNIT – II

One Dimensional Steady State Conduction Heat Transfer: Variable Thermal conductivity – systems with heat sources or Heat generation-Extended surface (fins) Heat Transfer – Long Fin, Fin with insulated tip and Short Fin, Application to error measurement of Temperature **One Dimensional Transient Conduction Heat Transfer:** Systems with negligible internal resistance – Significance of Biot and Fourier Numbers –Infinite bodies- Chart solutions of transient conduction systems- Concept of Semi infinite body.

UNIT – III

Convective Heat Transfer: Classification of systems based on causation of flow, condition of flow, configuration of flow and medium of flow – Dimensional analysis as a tool for experimental investigation – Buckingham Π Theorem and method, application for developing semi – empirical non- dimensional correlation for convection heat transfer –

FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

Significance of non-dimensional numbers – Concepts of Continuity, Momentum and Energy Equations – Integral Method as approximate method -Application of Von Karman Integral Momentum Equation for flat plate with different velocity profiles.

Forced convection: External Flows: Concepts about hydrodynamic and thermal boundary layer and use of empirical correlations for convective heat transfer -Flat plates and Cylinders.

$\mathbf{UNIT} - \mathbf{IV}$

Internal Flows: Concepts about Hydrodynamic and Thermal Entry Lengths – Division of internal flow based on this –Use of empirical relations for Horizontal Pipe Flow and annulus flow.

Free Convection: Development of Hydrodynamic and thermal boundary layer along a vertical plate - Use of empirical relations for Vertical plates and pipes.

Heat Exchangers: Classification of heat exchangers – overall heat transfer Coefficient and fouling factor – Concepts of LMTD and NTU methods - Problems using LMTD and NTU methods.

UNIT - V

Heat Transfer with Phase Change:

Boiling: – Pool boiling – Regimes – Calculations on Nucleate boiling, Critical Heat flux and Film boiling. **Condensation:** Film wise and drop wise condensation –Nusselt's Theory of Condensation on a vertical plate - Film condensation on vertical and horizontal cylinders using empirical correlations.

Radiation Heat Transfer : Emission characteristics and laws of black-body radiation – Irradiation – total and monochromatic quantities – laws of Planck, Wien, Kirchoff, Lambert, Stefan and Boltzmann– heat exchange between two black bodies – concepts of shape factor – Emissivity – heat exchange between grey bodies – radiation shields – electrical analogy for radiation networks.

TEXT BOOKS:

- 1. Heat and Mass Transfer Dixit /Mc Graw Hill
- 2. Heat and Mass Transfer / Altamush Siddiqui/ Cengage

REFERENCE BOOKS:

- 1. Essential Heat Transfer Christopher A Long / Pearson
- 2. Heat Transfer –Ghoshdastida / Oxford

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

FINITE ELEMENT METHODS (Professional Elective – I)

B.Tech. III Year II Sem. Course Code: NT603PC/ME611PE

L T/P/D C 3 0/0/0 3

Pre-requisites: Mechanics of Solids

Course Objective: The aim of the course is to provide the participants an overview on Finite Element Method, Material models, and Applications in Civil Engineering. At the end of the course, the participants are expected to have fair understanding of:

- Basics of Finite Element Analysis.
- Available material models for structural materials, soils and interfaces/joints.
- Modeling of engineering systems and Soil-Structure Interaction (SSI).
- Importance of interfaces and joints on the behavior of engineering systems.
- Implementation of material model in finite element method and applications

Course Outcomes: At the end of the course, the student will be able to, Apply finite element method to solve problems in solid mechanics, fluid mechanics and heat transfer. Formulate and solve problems in one dimensional structures including trusses, beams and frames. Formulate FE characteristic equations for two dimensional elements and analyze plain stress, plain strain, axi-symmetric and plate bending problems. Implement and solve the finite element formulations using MATLAB.

UNIT – I

Introduction to Finite Element Method for solving field problems. Stress and Equilibrium. Boundary conditions. Strain – Displacement relations. Stress – strain relations.

One Dimensional Problems : Finite element modeling coordinates and shape functions.

Assembly of Global stiffness matrix and load vector. Finite element equations, Treatment of boundary conditions, Quadratic shape functions.

UNIT – II

Analysis of Trusses: Stiffness Matrix for Plane Truss and Space Truss Elements, Stress Calculations.

Analysis of Beams: Element stiffness matrix for two node, two degrees of freedom per node beam element, Load Vector, Deflection, Stresses

UNIT – III

Finite element modeling of two dimensional stress analysis with constant strain triangles and treatment of boundary conditions. Estimation of Load Vector, Stresses

Finite element modeling of Axi-symmetric solids subjected to Axi-symmetric loading with triangular elements. Two dimensional four noded Isoparametric elements and numerical integration.

R16 B.TECH MECHANICAL ENGG.

UNIT - IV

Steady State Heat Transfer Analysis: one dimensional analysis of Slab, fin and two dimensional analysis of thin plate.

Analysis of a uniform shaft subjected to torsion.

UNIT – V

Dynamic Analysis: Formulation of finite element model, element - Mass matrices, evaluation of Eigen values and Eigen vectors for a stepped bar, truss and beam.

Finite element – formulation to 3 D problems in stress analysis, convergence requirements, Mesh generation. techniques such as semi automatic and fully Automatic use of softwares such as ANSYS, NISA, NASTRAN, etc.

TEXT BOOKS:

- 1. Finite Element Methods: Basic Concepts and applications/Alavala/PHI
- 2. Introduction to Finite Elements in Engineering, Chandrupatla, Ashok and Belegundu/Pearson

REFERENCE BOOKS:

- 1. An Introduction to the Finite Element Method / J.N.Reddy/ Mc Graw Hill
- .rge 2. Finite Element Analysis / SS Bhavikatti / New Age
- 3. Finite Element Method/ Dixit/Cengage

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

REFRIGERATION AND AIR CONDITIONING (Professional Elective - I)

B.Tech. III Year II Sem. Course Code: ME612PE L T/P/D C 3 0/0/0 3

Pre-requisite: Thermodynamics

Course Objective: To apply the principles of Thermodynamics to analyze different types of refrigeration and air conditioning systems and to understand the functionality of the major components.

Course Outcomes: At the end of the course, the student should be able to Differentiate between different types of refrigeration systems with respect to application as well as conventional and unconventional refrigeration systems. Thermodynamically analyse refrigeration and air conditioning systems and evaluate performance parameters. Apply the principles of Psychometrics to design the air conditioning loads for the industrial applications.

UNIT – I

Introduction to Refrigeration: - Necessity and applications – Unit of refrigeration and C.O.P. – Mechanical Refrigeration – Types of Ideal cycle of refrigeration.

Air Refrigeration: Bell Coleman cycle and Brayton Cycle, Open and Dense air systems – Actual air refrigeration system – Refrigeration needs of Air crafts- Air systems – Application of Air Refrigeration, Justification – Types of systems – Problems.

UNIT – II

Vapour compression refrigeration – working principle and essential components of the plant – Simple Vapour compression refrigeration cycle – COP – Representation of cycle on T-S and p-h charts – effect of sub cooling and super heating – cycle analysis – Actual cycle Influence of various parameters on system performance – Use of p-h charts – Problems.

UNIT - III

System Components: Compressors – General classification – comparison – Advantages and Disadvantages. Condensers – classification – Working Principles. Evaporators – classification – Working Principles. Expansion devices – Types – Working Principles. Refrigerants – Desirable properties – common refrigerants used – Nomenclature – Ozone Depletion – Global Warming – Azeotropes and Zeotropes.

UNIT - IV

Vapor Absorption System – Calculation of max COP – description and working of NH3 – water system – Li – Br system. Principle of operation Three Fluid absorption system, salient features.

Steam Jet Refrigeration System – Working Principle and Basic Components Principle and operation of (i) Thermoelectric refrigerator (ii) Vortex tube or Hilsch tube.

R16 B.TECH MECHANICAL ENGG.

UNIT – V

Introduction to Air Conditioning: Psychometric Properties & Processes – Sensible and latent heat loads – Characterization – Need for Ventilation, Consideration of Infiltration – Load concepts of RSHF, ASHF, ESHF and ADP.

Concept of human comfort and effective temperature –Comfort Air conditioning – Industrial air conditioning and Requirements – Air conditioning Load Calculations.

Air Conditioning systems - Classification of equipment, cooling, heating humidification and dehumidification, filters, grills and registers, deodorants, fans and blowers.

Heat Pump – Heat sources – different heat pump circuits – Applications.

TEXT BOOKS:

- 1. Refrigeration and Air conditioning / CP Arora / Mc Graw Hill
- 2. Refrigeration and Air-Conditioning / RC Aora / PHI

REFERENCE BOOKS:

- 1. Principles of Refrigeration Dossat / Pearson
- 2. Basic Refrigeration and Air-Conditioning / Ananthanarayanan / Mc Graw Hill

www.firstRanker.com

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

MACHINE TOOL DESIGN (Professional Elective – I)

B.Tech. III Year II Sem. Course Code: ME613PE L T/P/D C 3 0/0/0 3

Pre-requisites: Machine Design, Machine Tools and Metrology, Machining Science

Course Objectives: As a result of this course, students will be able to:

- Implement the tool design process when designing tooling for the manufacturing of a product.
- Apply Geometric Tolerancing principles in the designs of tooling.
- Evaluate and select appropriate materials for tooling applications.
- Design, develop, and evaluate cutting tools and work holders for a manufactured product.
- Design, develop, and evaluate appropriate gaging /gaging systems to define limits and specifications of a work piece during the manufacturing process.
- Design, develop, and evaluate tooling for various joining processes.
- Apply ANSI standards to tool design drawings and layouts.
- Use CAD and conventional techniques in creating tooling drawings.

Course Outcomes: At the end of the course, the student will be able to, Understand basic motions involved in a machine tool. Design machine tool structures. Design and analyze systems for specified speeds and feeds. Select subsystems for achieving high accuracy in machining. Understand control strategies for machine tool operations. Apply appropriate quality tests for quality assurance.

UNIT - I

Introduction to Machine Tool Drives and Mechanisms: Introduction to the course, Working and Auxiliary Motions in Machine Tools, Kinematics of Machine Tools, Motion Transmission.

UNIT - II

Regulation of Speeds and Feeds: Aim of Speed and Feed Regulation, Stepped Regulation of Speeds, Multiple Speed Motors, Ray Diagrams and Design Considerations, Design of Speed Gear Boxes, Feed Drives, Feed Box Design.

UNIT - III

Design of Machine Tool Structures: Functions of Machine Tool Structures and their Requirements, Design for Strength, Design for Rigidity, Materials for Machine Tool Structures, Machine Tool Constructional Features, Beds and Housings, Columns and Tables, Saddles and Carriages.

R16 B.TECH MECHANICAL ENGG.

UNIT - IV

Design of Guideways, Power Screws and Spindles: Functions and Types of Guideways, Design of Guideways, Design of Aerostatic Slideways, Design of Anti-Friction Guideways, Combination Guideways, Design of Power Screws.

Design of Spindles and Spindle Supports: Functions of Spindles and Requirements, Effect of Machine Tool Compliance on Machining Accuracy, Design of Spindles, Antifriction Bearings.

UNIT - V

Dynamics of Machine Tools: Machine Tool Elastic System, Static and Dynamic Stiffness Acceptance Tests

TEXT BOOKS:

- 1. Machine Tool Design and Numerical Control/ N.K. Mehta / Mc Graw Hill
- 2. Principles of Machine Tools/ G.C. Sen and A. Bhattacharyya / , New Central Book Agency

REFERENCE BOOKS:

- 1. Design of Machine Tools / D. K Pal, S. K. Basu / Oxford
- 2. Machine Tool Design, Vol. I, II, III and IV / N. S. Acherkhan / MIR

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

IC ENGINES AND GAS TURBINES (Professional Elective - I)

B.Tech. III Year II Sem. Course Code: ME614PE L T/P/D C

3 0/0/0 3

Pre-requisites - Basic Thermodynamics

Course Objectives:

- Acquire knowledge about the IC engine cycles, classification and working Principles.
- Describe the testing and performance parameters along with heat balance Sheet.
- Explain different alternate fuels, gas turbines and about jet propulsion

Course Out Comes:

- Explain basic concepts of actual cycles with analysis and to describe the fundamental concepts of IC engines along with its working principles.
- Describe the combustion phenomenon in SI and CI engines.
- Evaluate the performance of IC engines and the importance of alternate fuels.
- Classify the essential components of gas turbine along with its performance Improving methods.
- Illustrate the working principle of different types of Jet propulsive engines and Rockets.

UNIT - I

Introduction: Basic Engine components and Nomenclature, Classification of Engines, The working principle of Engines, Comparison of 2-Stroke and 4-Stroke Engines; CI, and SI Engines, Ideal and Actual Working Cycles and their analysis, Valve timing Diagram. **Fuels:** Fossil fuels, Chemical structure of Petroleum, Properties of SI and CI Engine Fuels, Fuel Ratings; Octane Number, Cetane Number.

UNIT - II

Carburetors & Fuel Injection: Air Fuel Mixture Requirements, Construction and Working of Simple Carburetor, Calculation of Air-Fuel Ratio, Parts of Carburetor. Requirement of Injection Systems, Classification of Injection Systems, Fuel Feed pump, Injection Pumps, Working principles of Governors, Nozzles and Fuel Injector, Injection in SI and CI Engines. **Combustion and Ignition Systems in SI and CI Engines:** Normal and Abnormal Combustion in SI and CI Engines, Stages of Combustion, Detonation and Knocking.

UNIT - III

Performance parameters for IC Engines: Engine Power, Engine Efficiencies, Performance Characteristics, Variables Effecting Performance Characteristics, Methods of Improving Engine Performance, Heat Balance.

Modern Automotive Engines: Changes in Fuel injection Methods in S.I and C.I engines, Common Rail Direct Injection System, Gasoline Direct Injection, Variable Valve Technology, A brief review of Design changes to achieve high efficiency.

R16 B.TECH MECHANICAL ENGG.

UNIT - IV

Gas Turbine: Introduction to Gas Turbines, Development, Classification and Application of Gas Turbines, Ideal and Actual Cycles; Effect of Inter cooling, Reheating, Regeneration, Combined cycle, and Cogeneration.

Gas Turbine Cycles for Aircraft Propulsion: Criteria of performance, Intake, and propelling nozzle efficiencies, Simple Turbojet Cycle, The turboprop engine, Thrust augmentation, Gas turbine combustion systems, Combustion chamber designs, Gas Turbine Emissions.

TEXT BOOKS:

- 1. I.C. Engines/ Gas Turbines / V. Ganesan- Mc Graw Hill
- 2. Internal Combustion Engines /Colin R. Ferguson /Wiley

REFERENCE BOOKS:

- 1. Fundamentals of Internal Combustion Engines / H.N Gupta / PHI
- 2. Gas Turbine Theory/ HIH Saravanamuttoo, Cohen, Rogers/ Pearson

www.firstRanker.com

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

HEAT TRANSFER LAB

B.Tech. III Year II Sem. Course Code: ME604PC L T/P/D C 0 0/3/0 2

Pre-requisite: Thermodynamics

Course Objectives: To enable the student to apply conduction, convection and radiation heat transfer concepts to practical applications

Course Outcome: At the end of the lab sessions, the student will be able to

- Perform steady state conduction experiments to estimate thermal conductivity of different materials
- Perform transient heat conduction experiment
- Estimate heat transfer coefficients in forced convection, free convection, condensation and correlate with theoretical values
- Obtain variation of temperature along the length of the pin fin under forced and free convection
- Perform radiation experiments: Determine surface emissivity of a test plate and Stefan- Boltzmann's constant and compare with theoretical value

Minimum twelve experiments from the following:

- 1. Composite Slab Apparatus Overall heat transfer co-efficient.
- 2. Heat transfer through lagged pipe.
- 3. Heat Transfer through a Concentric Sphere
- 4. Thermal Conductivity of given metal rod
- 5. Heat transfer in pin-fin
- 6. Experiment on Transient Heat Conduction
- 7. Heat transfer in forced convection apparatus.
- 8. Heat transfer in natural convection
- 9. Parallel and counter flow heat exchanger.
- 10. Emissivity apparatus.
- 11. Stefan Boltzman Apparatus.
- 12. Critical Heat flux apparatus.
- 13. Study of heat pipe and its demonstration.
- 14. Film and Drop wise condensation apparatus

www.FirstRanker.com

R16 B.TECH MECHANICAL ENGG.

CADD and MAT LAB

B.Tech. III Year II Sem. Course Code: ME605PC

L T/P/D C a/2/2

0 0/3/0 2

Pre-Requisites:

- Familiarity with a programming language (Matlab or BASIC).
- Elementary ordinary differential equations.
- Elementary linear algebra.
- Basic principles of descriptive geometry.

Course Objectives: The objectives are:

- to acquaint the student with some of the terminology in this very new field and relate it to the basic engineering process of design,
- to provide an introduction to the basic analytical fundamentals that are used to create and manipulate geometric models in a computer program,
- to introduce the student to full-scale CAD software systems designed for geometric modeling of engineering components and systems (attention will be directed at both drafting and full 3-D modeling systems),
- to provide experience in using the CAD tools to develop a simple project of reasonable complexity, and
- to provide a brief survey of methods for integrating these tools into a comprehensive design system that incorporates advanced database management concepts.

Course Outcomes:

- Students should be able to apply computer methods for solving a wide range of engineering problems.
- Students should be able to use computer engineering software to solve and present problem solutions in a technical format.
- Students should be able to utilize computer skills to enhance learning and performance in other engineering and science courses.
- And finally, students should be able to demonstrate professionalism in interactions with Colleagues, faculty, and staff.

CADD LAB

(Perform Any Six Exercises from Each Laboratory)

List of exercises Using Software Capable of Drafting and Modeling

- Study of capabilities of software for Drafting and Modeling Coordinate systems (absolute, relative, polar, etc.) – Creation of simple figures like polygon and general multi-line figures.
- 2. Study of script, DXE & IGES Files.
- 3. Drawing of a Title Block with necessary text and projection symbol.

R16 B.TECH MECHANICAL ENGG.

- 4. Drawing of curves like parabola, spiral, involute using B spline or cubic spline.
- 5. Creations of Shafts, rounds, Chamfers and slots
- 6. Representation of dimensioning and tolerances scanning and plotting.
- 7. Drawing of front view and top view of simple solids like prism, pyramid, cylinder, cone, etc, and dimensioning.
- 8. Drawing sectional views of prism, pyramid, cylinder, cone, etc,
- 9. Drawing of front view and top view and side view of objects for the given pictorial views (eg. V-block, Simple stool, Objects with hole and curves).
- 10. Drawing isometric projection of simple objects.
- Creation of 3-D models of simple objects and obtaining 2-D multi-view drawings from 3-D model.
- 12. Assembling of part models using constraints

MATLAB

- 1. Write MATLAB commands to analyze arithmetic, logical and Boolean operations.
- 2. Write MATLAB commands to analyze vector operations and magic matrix's.
- 3. Write a MATLAB program to demonstrate if and else if statement for comparing Two numbers.
- 4. Analyze the following operations in MATLAB.
 - a) Colon operator b) Line Plotting c) 2D plotting
- 5. Write MATLAB code to observe Regression and Polynomial functions.
- 6. Generate an array of random numbers between 1 to 100. Arrange them in
- (a) Ascending and descending order
- (b) Pick the numbers divisible by 2 using suitable commands.
- 7. Write a program to multiply 3X3 matrix and obtain inverse of the resultant matrix.
- 8. Generate an array of random numbers between 1 to 50 and
- (a) Convert them into binary numbers
- (b) Normalize the numbers between 0 and 1 using suitable formula
- 9. Write a MATLAB program to generate second order system.
- 10. 3D surface map for the following function $g = Xe^{-(x^2+y^2)}$
- 11. Write a MATLAB program to obtain smallest and largest values of integers.
- 12. Write a MATLAB program to obtain smallest and largest of floating point numbers.

R16 B.TECH MECHANICAL ENGG.

ADVANCED ENGLISH COMMUNICATIONS SKILLS LAB

B.Tech. III Year II Sem.	L	T/P/D (С
Course Code: EN606HS	0	0/3/0	2

Introduction:

A course on *Advanced English Communication Skills (AECS) Lab* is considered essential at the third year level of B.Tech and B.Pharmacy courses. At this stage, the students need to prepare themselves for their career which requires them to listen to, read, speak and write in English both for their professional and interpersonal communication. The main purpose of this course is to prepare the students of Engineering for their placements.

Course Objectives: This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve students' fluency in spoken English
- To enable them to listen to English spoken at normal conversational speed
- To help students develop their vocabulary
- To read and comprehend texts in different contexts
- To communicate their ideas relevantly and coherently in writing
- To make students industry-ready
- To help students acquire behavioral skills for their personal and professional life
- To respond appropriately in different socio-cultural and professional contexts

Course Outcomes: Students will be able to:

- Acquire vocabulary and use it contextually
- Listen and speak effectively
- Develop proficiency in academic reading and writing
- Increase possibilities of job prospects
- Communicate confidently in formal and informal contexts

Syllabus

The following course activities will be conducted as part of the Advanced English Communication Skills (AECS) Lab:

- 1. **Inter-personal Communication and Building Vocabulary** Starting a Conversation – Responding Appropriately and Relevantly – Using Appropriate Body Language – Role Play in Different Situations - Synonyms and Antonyms, One-word Substitutes, Prefixes and Suffixes, Idioms and Phrases and Collocations.
- 2. **Reading Comprehension** –General Vs Local Comprehension, Reading for Facts, Guessing Meanings from Context, , Skimming, Scanning, Inferring Meaning.
- 3. Writing Skills Structure and Presentation of Different Types of Writing Letter Writing/Resume Writing/ e-correspondence/ Technical Report Writing.
- 4. **Presentation Skills** Oral Presentations (individual or group) through JAM Sessions/Seminars/PPTs and Written Presentations through Posters/Projects/Reports/ e-mails/Assignments... etc.,
- Group Discussion and Interview Skills Dynamics of Group Discussion, Intervention, Summarizing, Modulation of Voice, Body Language, Relevance, Fluency and Organization of Ideas and Rubrics of Evaluation- Concept and Process,

R16 B.TECH MECHANICAL ENGG.

Pre-interview Planning, Opening Strategies, Answering Strategies, Interview through Tele-conference & Video-conference and Mock Interviews.

Minimum Hardware Requirement

Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics
- Eight round tables with five movable chairs for each table.
- Audio-visual aids
- LCD Projector
- Public Address system
- Computer with suitable configuration

Suggested Software: The software consisting of the prescribed topics elaborated above should be procured and used.

- **Oxford Advanced Learner's Compass**, 8th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.

REFERENCES:

- 1. Kumar, Sanjay and Pushp Lata. English for Effective Communication, Oxford University Press, 2015.
- 2. Konar, Nira. English Language Laboratories A Comprehensive Manual, PHI Learning Pvt. Ltd., 2011.

www.FirstRanker.com