JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M. Tech in STRUCTURAL ENGINEERING Effective from Academic Year 2017- 18 admitted batch

COURSE STRUCTURE AND SYLLABUS

I Semester

Category	Course Title	Int.	Ext.	L	Т	Р	С
		marks	marks				
PC-1	Theory of Elasticity	25	75	4	0	0	4
PC-2	Structural Dynamics	25	75	4	0	0	4
PC-3	Advanced Structural Analysis	25	75	4	0	0	4
PE-1	Advanced Concrete Technology	25	75	3	0	0	3
	Tall Buildings						
	Advanced Foundation Engineering						
PE-2	Advanced R.C. Design	25	75	3	0	0	3
	Soil Dynamic & Foundation Engineering						
	Plastic Analysis & Design						
OE-1	*Open Elective -I	25	75	3	0	0	3
Laboratory I	Advanced Structural Engineering	25	75	0	0	3	2
	Laboratory						
Seminar I	Seminar-I	100	0	0	0	3	2
	Total	275	525	21	0	6	25

II Semester

Category	Course Title	Int.	Ext.	L	T	Р	С
	2.0	marks	marks				
PC-4	Advanced Steel Design	25	75	4	0	0	4
PC-5	Theory of Plates	25	75	4	0	0	4
PC-6	Pre-stressed Concrete	25	75	4	0	0	4
PE-3	Finite Element Method	25	75	3	0	0	3
	Bridge Engineering						
	Design of Substructures						
PE4	Earthquake Resistant Design of	25	75	3	0	0	3
	Buildings						
	Repair & Rehabilitation of Buildings						
	Stability of Structures						
OE-2	*Open Elective – II	25	75	3	0	0	3
Laboratory II	CAD Lab	25	75	0	0	3	2
Seminar II	Seminar-II	100	0	0	0	3	2
	Total	275	525	21	0	6	25

III Semester

Course Title	Int. marks	Ext. marks	L	Т	Р	С
Technical Paper Writing	100	0	0	3	0	2
Comprehensive Viva-Voce	0	100	0	0	0	4
Project work Review II	100	0	0	0	22	8
Total	200	100	0	3	22	14

IV Semester

Course Title	Int. marks	Ext. marks	L	Т	Р	С
Project work Review III	100	0	0	0	24	8
Project Evaluation (Viva-Voce)	0	100	0	0	0	16
Total	100	100	0	0	24	24

^{*}Open Elective subjects must be chosen from the list of open electives offered by OTHER departments.

For Project review I, please refer 7.10 in R17 Academic Regulations.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech – I Year – II Sem. (Structural Engg.)

ADVANCED STEEL DESIGN (PC - IV)

Course Objectives: To impart knowledge on behavior and design of various connections, industrial and steel girders.

Course Outcomes: The learner will be able to design different steel structures

UNIT - I:

Simple connections – Bolted, Pinned and Welded Connections: Bolted Connections- Load Transfer Mechanism – Failure of Bolted Joints – Specifications for Bolted Joints – Bearing – Type Connections – Tensile Strength of Plate – Strength and Efficiency of the Joint – Combined Shear and Tension – Slip – Critical Connections – Praying Action – Combined Shear and Tension for Slip-Critical Connections. Design of Groove welds- Design of Fillet Welds- Design of Intermittent fillet welds- Failure of Welds.

UNIT - II

Eccentric and Moment Connections: Introduction – Beams – Column Connections- Connections Subjected to Eccentric Shear – Bolted Framed Connections- Bolted Seat Connections – Bolted Bracket Connections. Bolted Moment Connections – Welded Framed Connections – Welded Bracket Connections - Moment Resistant Connections.

UNIT - III

Analysis and Design of Industrial Buildings: Dead loads, live loads and wind loads on roofs. Design wind speed and pressure, wind pressure on roofs; wind effect on cladding and louvers; Design of angular roof truss, tubular truss, truss for a railway platform. Design of purlins for roofs, design of built up purlins, design of knee braced trusses and stanchions. Design of bracings.

UNIT - IV:

Design of Steel Truss Girder Bridges: Types of truss bridges, component parts of a truss bridge, economic proportions of trusses, self weight of truss girders, design of bridge compression members, tension members; wind load on truss girder bridges; wind effect on top lateral bracing; bottom lateral bracing; portal Bracing; sway bracing.

UNIT - V:

Design of Steel Bunkers and Silos: Introduction – Janseen's Theory – Airy's Theory – Design of Parameters – Design Criteria – Analysis of Bins – Hopper Bottom –Design of Bins.

TEXT BOOKS:

- 1. Limit State Design of Steel Structures S. K. Duggal, McGraw Hill Education Private Ltd. New Delhi.
- 2. Design of Steel Structures, K. S. Sairam, Pearson Education.

REFERENCES:

- 1. Design of Steel Structures, N. Subramanian, Oxford University Press.
- 2. Design Steel Structures Volume II, Dr. Ramachandra & Vivendra Gehlot, Scientific Publishers Journals Department.
- 3. Design of Steel Structures Gaylord & Gaylord, Publisher; Tata McGraw Hill, Education. Edition 2012.
- 4. Indian Standard Code IS 800-2007 General Construction in Steel- Code of Practice,
- 5. Steel Tables.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech – I Year – II Sem. (Structural Engg.)

THEORY OF PLATES (PC - V)

Course Objectives: To impart knowledge on the behavior of plates and to analyse the problems pertaining to beams on elastic foundation.

Course Outcomes: The learner will be able to understand the behavior of plates for loadings and boundary conditions.

UNIT - I

Cylindrical Bending: Different kind of plates – Assumptions – Derivation of differential equation for cylindrical bending of long rectangular plates - Analysis of uniformly loaded rectangular plates with edges simply supported and fixed subjected to uniform load.

Pure Bending of Plates: Slope and curvature of slightly bent plates – Relations between moments and curvature - Particular cases of pure bending - Strain energy in pure bending –Energy methods like Ritz and Galerkin Methods to rectangular plates subjected to simple loadings.

UNIT - II

Small Deflection Theory of Thin Rectangular Plates: Assumptions – Derivation of governing differential equation for thin plates – Boundary conditions – simply supported plate under sinusoidal load – Navier's solution – Application to different cases – Levy's solution for various boundary conditions subjected to different loadings like uniform and hydrostatic pressure.

UNIT - III

Circular Plates: Symmetrical loading – Relations between slope, deflection, moments and curvature – Governing differential equation – Uniformly loaded plates with clamped and simply supported edges – Central hole – bending by moments and shearing forces uniformly distributed.

Orthotropic Plates: Introduction – Bending of anisotropic plates - Derivation of governing differential equation – Determination of Rigidities in various cases like R.C. slabs, corrugated sheet – Application to the theory of grid works.

UNIT - IV

Plates on Elastic Foundations: Governing differential equation – deflection of uniformly loaded simply supported rectangular plate – Navier and Levy type solutions – Large plate loaded at equidistant points by concentrated forces P.

UNIT-V

Buckling of Plates: Governing equation for Bending of plate under the combined action of in-plane loading and lateral loads – Buckling of rectangular plates by compressive forces acting in one and two directions in the middle plane of plate

Finite Difference Methods: Introduction - Application to rectangular plates subjected to simple loading.

TEXT BOOK

1. Theory of Plates and Shells by Timoshenko, McGraw Hill Book Co., New York.

REFERENCES:

- 1. Theory and Analysis of Plates by P. Szilard, Prentice Hall.
- 2. Theory of Plates by K. Chandrasekhara, University Press.
- 3. Plate Analysis by N. K. Bairagi, Khanna Publishers. New Delhi.
- 4. Numerical Methods for Engineering Problems, N. Krishna Raju & K. U Muthu, Mac-Millan publishers

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech – I Year – II Sem. (Structural Engg.) PRE-STRESSED CONCRETE (PC - VI)

Course Objectives: To impart knowledge on basics of prestressing and designing of different structural elements using Prestressing techniques.

Course Outcomes: The learner will be able to understand the prestressing techniques, design the various structural elements using Prestressing techniques.

UNIT - I

General Principles of Prestressed Concrete: Pre-tensioning and post – tensioning – Prestressing by straight, concentric, eccentric, bent and parabolic tendons – Different methods and systems of prestressing like Hoyer system, Freyssinet system, Magnel Blaton system – Lee-Mc call system. **Losses of Prestress:** Loss of prestress in pre-tensioned and post-tensioned members due to various causes like elastic shortening of concrete, shrinkage of concrete, creep of concrete, relaxation of steel, slip in anchorage, bending of member and frictional loss – Analysis of sections for flexure.

UNIT - II

Design of Section for Flexure: Allowable stresses – Elastic design of simple beams having rectangular and I-section for flexure – kern lines – cable profile and cable layout.

Design of Sections for Shear: Shear and Principal Stresses – Improving shear resistance by different prestressing techniques – horizontal, sloping and vertical prestressing – Analysis of rectangular and I–beam – Design of shear reinforcement – IS: 1343: 2012 provisions.

UNIT - III

Deflections of Prestressed Concrete Beams : Short term deflections of uncracked members—Prediction of long-time deflections – load – deflection curve for a PSC beam – IS code requirements for max. Deflections.

UNIT - IV

Transfer of Prestress in Pretensioned Members: Transmission of prestressing force by bond – Transmission length – Flexural bond stresses – IS: 1343: 2012 provisions – Anchorage zone stresses in post tensioned members – stress distribution in End block – Analysis by approximate, Guyon and Magnel methods – Anchorage zone reinforcement.

UNIT-V

Statically Indeterminate Structures: Advantages & disadvantages of continuous PSC beams – Primary and secondary moments – P and C lines – Linear transformation concordant and non-concordant cable profiles – Analysis of continuous beams and simple portal frames (single bay and single story)

TEXT BOOKS:

- 1. Prestressed concrete by Krishna Raju, Tata McGraw Hill Book Co., New Delhi.
- 2. Prestressed Concrete by K.U. Muthu, et.al, PHI Learning Pvt. Ltd.,

REFERENCES:

- 1. Design of Prestressed Concrete Structures by T.Y. Lin and Burn, John Wiley, New York.
- 2. Prestressed Concrete by N. Rajagopalan, Alpha Science International.
- 3. Prestressed Concrete by S. RamamruthamDhanpatRai& Sons, Delhi.
- 4. IS 1343 -2012 Prestressed Concrete Code of Practice, Bureau of Indian Standards.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M. Tech – I Year – II Sem. (Structural Engg.)

FINITE ELEMENT METHOD (PE - III)

Course Objectives: To impart knowledge about various finite element techniques and development of finite element code.

Course Outcome: The learner will be able to solve continuum problems using finite element analysis.

UNIT - I

Introduction: Concepts of FEM - steps involved - merits and demerits - energy principles – Discretization - Raleigh - Ritz method of functional approximation.

Principles of Elasticity: Stress equations - strain displacement relationships in matrix form plane stress, plane strain and axi-symmetric bodies of revolution with axi-symmetric loading.

UNIT - I

One dimensional FEM: Stiffness matrix for beam and bar elements - shape functions for 1-D elements. Two dimensional FEM: Different types of elements for plane stress and plane strain analysis - displacement models - generalized coordinates - shape functions - convergent and compatibility requirements - geometric invariance - natural coordinate system - area and volume coordinates - generation of element stiffness and nodal load matrices

UNIT - III

Isoparametric formulation: Concept - different isoparametric elements for 2D analysis -formulation of 4-noded and 8-noded isoparametric quadrilateral elements - Lagrange elements - serendipity elements.

Axi Symmetric Analysis: bodies of revolution - axi symmetric modeling - strain displacement relationship - formulation of axi symmetric elements.

Three dimensional FEM: Different 3-D elements-strain-displacement relationship –formulation of hexahedral and isoparametric solid element.

UNIT - IV

Introduction to Finite Element Analysis of Plates:Basic theory of plate bending - thin plate theory - stress resultants - Mindlin's approximations - formulation of 4-noded isoperimetric quadrilateral plate element – Shell Element.

UNIT - V

Introduction to non – linear finite analysis – basic methods – application to Special structures.

Text Books:

- 1. A First Course in a Finite Element by Daryl L .Logan, CL Engineers.
- 2. Concepts and Applications of Finite Element Analysis by Robert D. Cook, David S. Malkus and Michael E. Plesha, John Wiley & Sons.

References:

- 1. Introduction to Finite element Method by Tirupathi Chandra Patla and Belugunudu
- 2. Finite element Methods by OC Zienkiewicz
- 3. Finite element analysis, theory and programming by GS Krishna Murthy.
- 4. Introduction to Finite element Method by JN Reddy.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech – I Year – II Sem. (Structural Engg.)

BRIDGE ENGINEERING (PE - III)

Course Objectives: To impart knowledge on the behavior and design aspects of various types of bridges.

Course Outcomes: The learner will be able to analyze and design of different types of bridges

UNIT - I

Concrete Bridges: Introduction-Types of Bridges-Economic span length-Types of loading-Dead load-live load-Impact Effect-Centrifugal force-wind loads-Lateral loads-Longitudinal forces-Sesmic loads-Frictioal resistance of expansion bearings-Secondary Stresses-Temperature Effect-Erection Forces and effects-Width of raodway and footway-General Design Requirements.

UNIT - II

Solid slab Bridges: Introduction-Method of Analysis and Design.

UNIT - III

Girder Bridges: Introduction-Method of Analysis and Design-Courbon's Theory, Grillage analogy

UNIT - IV

Pre-Stressed Concrete Bridges: Basic principles-General Design requirements-Mild steel reinforcement in prestessed concrete member-Concrete cover and spacing of pre-stressing steel-Slender beams-Composite Section-Propped-Design of Propped Composite Section-Unproped composite section-Two-stage Prestressing-Shrinking stresses-General Design requirements for Road Bridges.

UNIT-V

Analysis of Bridge Decks: Harmonic analysis and folded plate theory-Grillage analogy- Finite strip method and FEM. Sub-structure of bridges: Substructure- Beds block-Piers- Pier Dimensions- Design loads for piers- Abutments- Design loads for Abutments.

TEXT BOOKS:

- 1. Essentials of Bridge Engineering by Johnson Victor, Oxford & IBH
- 2. Design of Bridges by N. Krishna Raju, Oxford & IBH

REFERENCES

- 1. Design of Concrete Bridges by M. G. Aswani, V. N. Vazirani and M. M. Ratwani.
- 2. Bridge Deck Behaviour by E. C. Hambly.
- 3. Design of Bridges by V. V. Sastry, Dhanpat Rai & Co
- 4. Concrete Bridge Design and Practice by V. K. Raina.
- 5. Design of Bridge Structures by Jagadeesh & Jayaram, PHI learning Pvt. ltd.
- 6. IRC: 112, 2011, Code of Practice for Concrete Road Bridges.
- 7. IRC: 6 and 21 2000, Code of Practice for Concrete Road Bridges

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. I Year II - Sem (Structural Engg.)

DESIGN OF SUBSTRUCTURES (PE - III)

Course Objectives: To impart knowledge on geotechnical and structural design of different types of foundation appropriate to the type of soil for different structures.

Course Outcome: The learner will be able to design shallow and deep foundations from both geotechnical and structural considerations.

UNIT - I

Shallow Foundations: Basic requirements of foundation –Types and selection of foundations. Bearing capacity of foundations, structural design of isolated, combined, eccentric, strip, and strap footings, Detailing of reinforcement.

UNIT - II

Raft Foundations: Types of rafts, SBC of raft foundation and structural design of different raft foundations, Detailing of reinforcement.

UNIT - III

Pile Foundations: Types of piles, Load carrying capacity of single and pile groups, structural design of piles, pile caps and pile-raft foundation, Detailing of reinforcement.

UNIT - IV

Design of Retaining walls: Stability Checks and structural design of gravity, Cantilever retaining walls, Detailing of reinforcement.

UNIT - V

Machine Foundations: Vibration analysis of machine foundation - Design of foundation for Reciprocating machines and Impact machines - as per I S Codes, Detailing of reinforcement.

TEXT BOOKS:

- 1. Varghese P.C. Design of RC foundations, PHI Learning Pvt. Ltd.
- 2. Unnikrishnana Pillai & Devadas Menon, Reinforces Concrete Design, McGraw Hill Publishing Pvt. Ltd.

REFERENCE:

- 1. Bowles .J.E., "Foundation Analysis and Design", McGraw Hill Publishing co., New York, 1986
- 2. Tomlinson. M.J, "Foundation Design and Construction", Longman, Sixth Edition, New Delhi, 1995
- 3. Das, B.M., Principles of Foundation Engineering, Design and Construction, Fourth Edition, PWS Publishing, 1999.
- 4. Narayan V. Nayak, Foundation design manual, Dhanpat Rai & Sons, 2006.
- 5. Prakash Shamsher and Puri Vijay K, Foundations for Machines, Analysis and Design" John Wiley and Sons, USA, 1988.
- 6. IS 2911: Part 1: Sec 1: 1979 Code of practice for design and construction of pile foundations: Part 1 Concrete piles, Section 1 Driven cast in-situ concrete piles.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech – I Year – II Sem. (Structural Engg.)

EARTHQUAKE RESISTANT DESIGN OF BUILDINGS (PE - IV)

Course Objectives: To impart knowledge on the seismology and behavior of buildings during earthquakes.

Course Outcomes: The learner will be able to analyse and design buildings to resist seismic forces

UNIT - I

Engineering Seismology: Earthquake phenomenon cause of earthquakes-Faults- Plate tectonics-Seismic waves- Terms associated with earthquakes-Magnitude/Intensity of an earthquake-scales-Energy released-Earthquake measuring instruments-Seismoscope, Seismograph, accelerograph-Characteristics of strong ground motions- Seismic zones of India.

UNIT - II

Conceptual design: Introduction-Functional planning-Continuous load path-Overall form-simplicity and symmetry-elongated shapes-stiffness and strength-Horizontal and Vertical members-Twisting of buildings-Ductility-definition-ductility relationships-flexible buildings-framing systems-choice of construction materials-unconfined concrete-confined concrete-masonry-reinforcing steel. Introduction to earthquake resistant design: Seismic design requirements-regular and irregular configurations-basic assumptions-design earthquake loads-basic load combinations-permissible stresses-seismic methods of analysis-factors in seismic analysis-equivalent lateral force method-dynamic analysis-response spectrum method-Time history method.

UNIT - III

Reinforced Concrete Buildings: Principles of earthquake resistant deign of RC members- Structural models for frame buildings- Seismic methods of analysis- Seismic deign methods- IS code based methods for seismic design- Seismic evaluation and retrofitting- Vertical irregularities- Plan configuration problems- Lateral load resisting systems- Determination of design lateral forces-Equivalent lateral force procedure- Lateral distribution of base shear. Masonry Buildings: Introduction-Elastic properties of masonry assemblage- Categories of masonry buildings- Behaviour of unreinforced and reinforced masonry walls- Behaviour of walls- Box action and bands- Behaviour of infill walls- Improving seismic behaviour of masonry buildings- Load combinations and permissible stresses- Seismic design requirements- Lateral load analysis of masonry buildings.

UNIT - IV

Structural Walls and Non-Structural Elements: Strategies in the location of structural walls- sectional shapes- variations in elevation- cantilever walls without openings — Failure mechanism of non-structures- Effects of non-structural elements on structural system- Analysis of non-structural elements- Prevention of non-structural damage- Isolation of non-structures.

UNIT-V

Ductility Considerations in Earthquake Resistant Design of RC Buildings: Introduction- Impact of Ductility- Requirements for Ductility- Assessment of Ductility- Factors affecting Ductility- Ductile detailing considerations as per IS 13920. Behaviour of beams, columns and joints in RC buildings during earthquakes-Vulnerability of open ground storey and short columns during earthquakes. Capacity Based Design: Introduction to Capacity Design, Capacity Design for Beams and Columns-Case studies.

TEXT BOOKS:

- 1. Earthquake Resistant Design of structures S. K. Duggal, Oxford University Press
- 2. Earthquake Resistant Design of structures Pankaj Agarwal and Manish Shrikhande, Prentice Hall of India Pvt. Ltd.

REFERENCE BOOKS:

- 1. Seismic Design of Reinforced Concrete and Masonry Building T. Paulay and M.J.N. Priestly, John Wiley & Sons
- 2. Masory and Timber structures including earthquake Resistant Design Anand S.Arya, Nemchand & Bros
- 3. Earthquake –Resistant Design of Masonry Building –Miha Tomazevic, Imperial College Press.
- 4. Earthquake Tips Learning Earthquake Design and Construction C. V. R. Murty

REFERENCE CODES:

- 1. IS: 1893 (Part-1) -2016. "Criteria for Earthquake Resistant Design of structures." B.I.S., New Delhi.
- 2. IS: 4326-1993, "Earthquake Resistant Design and Construction of Building", Code of Practice B.I.S., New Delhi.
- 3. IS: 13920- 2016, "Ductile detailing of concrete structures subjected to seismic force" Guidelines, B.I.S., New Delhi.

www.FirstPanker.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech – I Year – II Sem. (Structural Engg.)

REPAIR & REHABILITATION OF BUILDINGS (PE-IV)

Course Objectives: To impart knowledge on the distress in structures.

Course Outcomes: The learner will be able to understand the reasons for distress in structures and will be able to suggest suitable solutions

UNIT - I

Introduction – Deterioration of Structures – Distress in Structures – Causes and Prevention. Mechanism of Damage – Types of Damage.

UNIT - II

Corrosion of Steel Reinforcement – Causes – Mechanism and Prevention. Damage of Structures due to Fire – Fire Rating of Structures – Phenomena of Desiccation.

UNIT - III

Inspection and Testing – Symptoms and Diagnosis of Distress - Damage assessment – NDT.

UNIT - IV

Repair of Structure – Common Types of Repairs – Repair in Concrete Structures – Repairs in Under Water Structures – Guniting – Shotcreting – Underpinning -Strengtheningof Structures – Strengthening Methods – Retrofitting – Jacketing.

UNIT - V

Health Monitoring of Structures - Use of Sensors - Building Instrumentation

REFERENCES

- 1. Concrete Technology by A. R. Santhakumar, Oxford University press
- 2. Defects and Deterioration in Buildings, E F & N Spon, London
- 3. Non-Destructive Evaluation of Concrete Structures by Bungey Surrey University Press
- 4. Maintenance, Repair & Rehabilitation and Minor Works of Buildings by P. C. Varghese, PHI.
- 5. Maintenance and Repair of Civil Structures, B.L. Gupta and Amit Gupta, Standard Publications.
- 6. Concrete Repair and Maintenance Illustrated, RS Means Company Inc W. H. Ranso, (1981)
- 7. Building Failures: Diagnosis and Avoidance, EF & N Spon, London, B. A. Richardson, (1991).

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech – I Year – II Sem. (Structural Engg.)

STABILITY OF STRUCTURES (PE - IV)

Course Objectives: To impart knowledge on the elastic, inelastic buckling and torsional buckling of structures.

Course Outcomes: The learner will be able to understand buckling of bars and frames.

UNIT - I

Beam Columns: Differential equations for beam columns- beam columns with concentrated continuous lateral loads-couples- beam columns with built in ends – continuous beams with axial load – application of trigonometrically series – Effects of initial curvature on deflections – Determination of allowable stresses.

UNIT - II

Elastic Buckling of bars and frames: Elastic Buckling of straight columns – Effect of shear stress on buckling – Eccentrically and laterally loaded columns- Buckling of frames-large deflections of buckled bars-Energy methods- Buckling of bars on elastic foundations- Buckle line of bar with intermediate compressive forces - Buckling of bars with change in cross-section – Effect of shear force on critical load- built up columns.

UNIT - III

In Elastic Buckling: Buckle line of straight bar- Double modulus theory – Tangent modulus theory, Inelastic lateral Buckling. Experiments and design formulae: Experiments on columns – Critical stress diagram – Empirical formulae for design –various end conditions

UNIT - IV

Torsion Buckling: Pure torsion of thin walled bars of open cross section – Non-uniform torsion of thin walled bars of open cross section- Torsional buckling – Buckling by torsion and flexure.

UNIT - V

Lateral buckling of simply supported Beams: Beams of Rectangular cross-section subjected to pure bending. Buckling of simply supported Rectangular plates: Derivation of equation of plate subjected to constant compression in one and two directions.

TEXT BOOKS

1. Theory of elastic Stability by Timshenko & Gere -McGraw Hill

REFERENCES

- 1. Stability of metallic structures by Blunch- McGraw Hill
- 2. Theory of Beam- Columns Vol. I by Chem. & Atste McGraw Hill
- 3. Stability Theory of Structures by Ashwini Kumar, Allied Publishers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech – I Year – II Sem. (Structural Engg.)

CAD LABORATORY

Course Objective: To impart knowledge on the use of various softwares

Course Outcome: the student will be able to analyze and design structural elements of a building

- 1. Design of beam using Excel for flexural shear and with deflection check
 - a) Singly and doubly reinforced RC Beam
- 2. Design of Steel Beam using Excel for flexural shear and with deflection check
- 3. Design of RC slab one-way and two-way using Excel
- 4. Design of RC short & long columns subjected to biaxial bending.
- 5. Design of isolated footings using Excel
- 6. Analysis & design of 2-D steel truss
- 7. Analysis & Design of 2-D building frame
- 8. Analysis & Design of Multi-storey space frame (for mid rise) subjected to lateral loads
- 9. Plate bending using FEM
- 10. Modal analysis of a high rise building

Note: Exercises from 6-10 may be carried out using any relevant commercial software package.

MWW.FirstRanker.com