

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.TECH. (MACHINE DESIGN)

EFFECTIVE FROM ACADEMIC YEAR 2019- 20 ADMITTED BATCH

R19 COURSE STRUCTURE AND SYLLABUS

I Year I Semester

Course Code	Course Title	L	Т	Р	Credits
Professional Core - I	Advanced Mechanics of Solids	3	0	0	3
Professional Core - II	Advanced Mechanics of Machinery	3	0	0	3
Professional Elective - I	 Mechanical Vibrations Mechanical Behaviour of Materials Fracture Mechanics 	3	0	0	3
Professional Elective - II	 Design for Manufacturing & Assembly Optimization Techniques & Applications Composite Materials 	3	0	0	3
MC	Research Methodology & IPR	2	0	0	2
Lab - I	Advanced Dynamics Lab	0	0	4	2
Lab - II	Advanced Material Testing Lab	0	0	4	2
Audit - I	Audit Course-1	2	0	0	0
	Total Credits	16	0	8	18

I Year II Semester

Course Code	Course Title	L	Т	Р	Credits
Professional Core - III	Computer Aided Geometric Modelling	3	0	0	3
Professional Core - IV	Advanced Finite Element and Boundary Element Methods	3	0	0	3
Professional Elective - III	Advanced Machine Design Mechanics of Composite Materials Control Systems	3	0	0	3
Professional Elective - IV	Machine Tool Design Tribology Industrial Robotics	3	0	0	3
	Mini Project with Seminar	0	0	4	2
Lab - III	Advanced Computer Aided Modelling Lab	0	0	4	2
Lab - IV	Advanced Computer Aided Analysis Lab	0	0	4	2
Audit - II	Audit Course-2	2	0	0	0
	Total Credits	14	0	12	18

www.FirstRanker.com R19 M.WYOM. Fix St Ram be s room

Audit Course I & II:

- 1. English for Research Paper Writing
- 2. Disaster Management
- 3. Sanskrit for Technical Knowledge
- 4. Value Education
- 5. Constitution of India
- 6. Pedagogy Studies
- 7. Stress Management by Yoga
- 8. Personality Development through Life Enlightenment Skills

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

ADVANCED MECHANICS OF SOLIDS (Professional Core - I)

Prerequisite: Applied Mechanics, Mechanics of solids

Course Objectives: This course is concerned with the development of analytical methods for solving problems in mechanics of materials that are generally considered beyond the scope of basic course in the discipline.

Course outcomes: After completing this course, the student should be able to

- Determined the point of location of applied load to avoid twisting in thin sections used in aerospace applications.
- Understand the concept of distinguish between neutral and centroidal axes in curved beams.
- Understanding the analogy models developed for analyzing the non-circular bars subjected to torsion, and also analyzing the stresses developed between rolling bodies and stress in three dimensional bodies.

UNIT-I:

Shear center: Bending axis and shear center-shear center for axi-symmetric and unsymmetrical sections.

Unsymmetrical bending: Bending stresses in Beams subjected to Nonsymmetrical bending, Deflection of straight beams due to nonsymmetrical bending.

UNIT-II:

Curved beam theory: Winkler Bach formula for circumferential stress – Limitations – Correction factors –Radial stress in curved beams – closed ring subjected to concentrated and uniform loads-stresses in chain links.

UNIT-III:

Torsion: Linear elastic solution Prandtl elastic membrane (Soap-Film) Analogy; Narrow rectangular cross Section, Hollow thin wall torsion members, Multiply connected Cross Section.

UNIT-IV:

Contact stresses: Introduction, problem of determining contact stresses, Assumptions on which a solution for contact stresses is based; Expressions for principal stresses; Method of computing contact stresses, Deflection of bodies in point contact; Stresses for two bodies in contact over narrow rectangular area (Line contact) Loads normal to area, Stresses for two bodies in line contact, loads normal and Tangent to contact area.

UNIT-V:

Introduction to Three Dimensional Problems: Uniform stress stretching of a prismatic bar by its own weight twist of circular shafts of constant cross section, pure bending of plates.

TEXT BOOKS:

- 1. Advanced Mechanics of materials by Boresi & Sidebottom, Wiely International.
- 2. Theory of elasticity by Timoschenko S.P. and Goodier J.N. McGraw, Hill Publishers 3rd Edition

REFERENCE BOOKS:

- 1. Advanced strength of materials by Den Hortog J.P.
- 2. Theory of plates by Timoshenko.

www.FirstRanker.com R19 M. WYOM. Fix St Rambes Com

- 3. Strength of materials & Theory of structures by B.C Punmia (Vol I & II)
- 4. Strength of materials by Sadhu singh

MNN First Ranker. Com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

ADVANCED MECHANICS OF MACHINERY (Professional Core - II)

Prerequisite: Kinematics of machinery

Course Objectives: The overall objective of this course is to learn how to analyze the motions of mechanisms, design mechanisms to have given motions, and analyze forces in machines. To find radius of curvature of polodes.

Course outcomes: After completing this course, the student should be able to

- Understand the kinematic analysis of rolling bodies based on graphical, geometrical and analytical methods.
- Design of mechanisms by using graphically and analytically by involving function generator,
 rigid body guidance and path generation(Coupler curve) methods

UNIT-I:

Advanced Kinematics of plane motion- I: Introduction to plane motion. Euler – Savary Equation, the Inflection circle, Analytical and graphical determination of d_i, Bobillier's Construction, Collineation axis, Hartmann's Construction, Inflection circle for the relative motion of two moving planes, Application of the Inflection circle to kinematic analysis.

UNIT-II:

Advanced Kinematics of plane motion - II: Polode curvature, Hall's Equation, Polode curvature in the four bar mechanism, coupler motion, relative motion of the output and input links, Freudenstein's collineation – axis theorem, Carter –Hall circle.

UNIT-III:

Introduction to Synthesis-Graphical Methods - I: The Four bar linkage, Guiding a body through Two distinct positions, Guiding a body through Three distinct positions, The Roto center triangle, Guiding a body through Four distinct positions: Burmester's curve.

UNIT-IV:

Introduction to Synthesis-Graphical Methods - II: Function generation- General discussion, Function generation: Overlay's method, Function generation- Velocity – pole method, Path generation: Hrones's and Nelson's motion Atlas, Roberts's theorem.

UNIT-V:

Introduction to Synthesis - Analytical Methods: Function Generation: Freudenstien's equation, Precision point approximation. Path Generation: Synthesis of Four-bar Mechanisms for specified instantaneous condition, Method of components, Synthesis of Four-bar Mechanisms for prescribed extreme values of the angular velocity of driven link, Method of components.

TEXT BOOKS:

- 1. Kinematics and Dynamics of plane mechanisms by Jeremy Hirschhorn, McGraw-Hill, 1962.
- 2. Theory of Mechanisms and Machines by Amitabh Ghosh and Ashok Kumar Mallik, E.W.P. Publishers.

REFERENCE BOOKS:

- 1. Kinematics and Linkage Design by Allen S.Hall Jr., PHI, 1964.
- 2. Theory of Machines and Mechanisms by J.E Shigley and J.J. Uicker Jr., McGraw-Hill, 1995.

www.FirstRanker.com R19 M.WYOM. Fix St Rambes Com

- 3. A Robot Engineering Text book by Mohsen Shahinpoor, Harper & Row Publishers, New York, 1987.
- 4. Analysis of mechanisms and Robot manipulators by Joseph Duffy, Edward Arnold, 1980

MWW.FirstPainker.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

MECHANICAL VIBRATIONS (Professional Elective - I)

Prerequisite: Basic concepts of Physics

Course Objectives:

- To understand the fundamentals of Vibration Theory
- To be able to mathematically model real-world mechanical vibration problems

Course Outcomes: At the end of the course the students will be able to

- To study the vibrations in machine elements and how to control them.
- Ability to analyze the mathematical model of linear vibratory system to determine its response
- Obtain linear mathematical models of real life engineering systems
- Determine vibratory responses of single and multi degree of freedom systems to harmonic, periodic and non-periodic excitation

UNIT-I:

Free Vibration of Single Degree of Freedom Systems: Introduction, Free Vibration of an Undamped Translational System, Equation of Motion using Newton's second law of motion, Equation of motion using other methods, Equation of motion of a spring, mass system in vertical position, solution, Harmonic Motion Free Vibration of an Undamped Torsional System- Equation of motion. Free Vibration with Viscous Damping- Equation of motion.

UNIT-II:

Forced Vibration of Single Degree of Freedom Systems: Introduction, Response of an Undamped system under harmonic force, Total response, Beating Phenomenon. Response of a Damped System under Harmonic Force- Total Response, Quality Factor and Bandwidth, Response of a Damped system under the Harmonic Motion of the base, Fore Transmitted, Relative Motion.

UNIT-III:

Two Degree of Freedom Systems: Introduction, Equations of Motion for forced Vibration, Free Vibration Analysis of and undamped system, Torsional system, Coordinate Coupling and Principal Coordinates, forded Vibration Analysis, Semi definite Systems, Self- Excitation and stability Analysis.

UNIT-IV:

Multi-degree of Freedom Systems: Introduction Modeling of Continuous systems as Multi-degree of Freedom systems, Using Newton's second law to derive equations of motion, Influence Coefficients. Potential and kinetic energy expressions in matrix form, Generalized coordinates and generalized forces, Using Lagrange's equations to derive equations of motion, Equations of motion of undamped systems in matrix form, Eigen value problem, solution of the Eigen value problems – solution of the characteristic equation, orthogonality of normal modes, repeated Eigen values.

UNIT-V:

Determination of Natural Frequencies and Mode Shapes: Introduction, Dunkerley's formula, Rayleigh's Method- Properties of Rayleigh's Quotient, Computation of the Fundamental Natural Frequency, Fundamental Frequency of Beams and Shafts. Holzer's Method-Torsional systems, Spring Mass Systems. Jacobi method, Standard Eigen value Problems.

www.FirstRanker.com R19 M.WYOM. Fix St Rambes Com

TEXT BOOKS:

- 1. Mechanical Vibrations by S.S. Rao, 4th Edition, Pearson Publications.
- 2. Elements of Vibration Analysis by Meirovitch.

REFERENCE BOOKS:

- 1. Mechanical Vibrations by G.K. Groover.
- 2. Vibrations by W.T. Thomson
- 3. Mechanical Vibrations by Schaum series.

MMM.FilestRatiker.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

MECHANICAL BEHAVIOUR OF MATERIALS (Professional Elective - I)

Prerequisite: Physical Metallurgy

Course Objectives: The main objectives are to provide students with basic understanding of phase transformation by heat treating and stress-induced hardening, linear and nonlinear elastic behavior, deformation under multiaxial loading, plastic deformation and yield criteria, dislocation plasticity and strengthening mechanisms, creep, stress concentration effects, brittle versus ductile fracture, fracture mechanisms at different scales, fatigue, contact deformation, and wear.

Course outcomes: After completing this course, the student should be able to understand the different modes of failures like fracture, fatigue and creep of ductile and brittle materials

UNIT-I:

Fracture: Introduction, Types of Fracture in Metals, Griffith Theory of Brittle Fracture, Fracture of Single Crystals, Ductile Fracture, Concept of the Fracture Curve.

Fracture Mechanics: Strain Energy Release rate, Fracture Toughness and Design, Crack Opening Displacement, J-Integral, R Curve,

UNIT-II:

Theory of Elasticity and Plasticity:

Elasticity Theory: The State of Stress and strain, elastic stress-strain relation, anisotropy, elastic behaviour of metals, ceramics and polymers.

Plasticity: Hydrostatic and Deviatoric stress, Octahedral stress, yield criteria and yield surface, texture and distortion of yield surface, true stress and true strain, flow rules, strain hardening, Ramberg Osgood equation, stress -strain relation in plasticity, plastic deformation of metals and polymers

UNIT-III:

Fatigue-I: Introduction, Stress Cycles, S-N Curve, Effect of Mean Stress on Fatigue, Cyclic Stress strain curve, Low Cycle Fatigue, Strain Life Equation, Structural Features of Fatigue, Fatigue Crack Propagation, Effect of Metallurgical Variables on Fatigue.

UNIT-IV:

Fatigue-II: Effect of stress concentration on Fatigue, Size Effect, Surface effects on Fatigue, Fatigue under Combined stresses, Design for Fatigue, Machine Design approach-Infinite life design, Local strain approach, Corrosion Fatigue, Effect of Temperature on fatigue.

UNIT-V:

Creep deformation: The evolution of creep damage, primary, secondary and tertiary creep, Micro mechanisms of creep in materials and the role of diffusion, Ashby creep deformation maps. Stress dependence of creep – power law dependence. Comparison of creep performance under different conditions – extrapolation and the use of Larson-Miller parameters, Creep-fatigue interactions, Examples.

TEXT BOOKS:

- 1. Mechanical Metallurgy by G. E. Dieter, McGraw Hill, (1988)
- 2. Thin Film Materials L.B. Freund and S. Suresh, Cambridge University Press (2003).

REFERENCE BOOKS:

www.FirstRanker.com R19 M. WYOM. Fix St Ranker Ses Com

- 1. Fracture Mechanics Fundamentals and Applications by T.L. Anderson, 2nd Ed. CRC press, (1995)
- 2. Fracture of Brittle Solids by B. Lawn, Cambridge Solid State Science Series 2nd ed 1993.
- 3. Fundamentals of Fracture Mechanics by J.F. Knott, Butter worths (1973)
- 4. Worked examples in Fracture Mechanics by J.F. Knott, P Withey, Institute of Materials.
- 5. Fracture Mechanics by H.L. Ewald and R.J. H. Wanhill, Edward Arnold, (1984).
- 6. Fatigue of Materials by S. Suresh, Cambridge University Press, (1998)
- 7. Inelastic Deformation of Metals by D.C. Stouffer and L.T. Dame, Wiley (1996)
- 8. The Physics of Creep by F.R.N. Nabarro, H.L. de Villiers, Taylor and Francis, (1995)

MMM.FirstRanker.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

FRACTURE MECHANICS (Professional Elective - I)

Prerequisite: Strength of Materials, Theory of Elasticity desirable.

Course Objectives:

- Acquire fundamental understanding of the fracture of solid materials.
- Develop detailed understanding of fracture mechanics, creep, and fatigue.
- Obtain fundamental knowledge of corrosion and environmentally-assisted cracking.
- Acquire basic understanding of the techniques used to perform failure analysis.

Course Outcomes: At the end of the course the students will be able to

- Predict material failure for any combination of applied stresses.
- Estimate failure conditions of a structure
- Determine the stress intensity factor for simple components of simple geometry
- Predict the likelihood of failure of a structure containing a defect

UNIT-I:

Introduction to fracture Mechanics: The Crack Tip Plastic Zone, Methods for Measuring Fracture Toughness.

UNIT-II:

Strength of cracked bodies- potential energy and surface energy – Griffith's theory – Irwin – Orwin extension of Griffith's theory to ductile materials – Stress analysis of cracked bodies – Effect of thickness on fracture toughness – Stress intensity factors for typical geometries.

UNIT-III:

PHYSICAL ASPECTS OF FATIGUE: Phase in fatigue life - Crack initiation - Crack growth - Final fracture - Dislocation - Fatigue fracture surfaces. Safe Life and Fail safe design philosophies Importance of Fracture Mechanics in Aerospace structure - Applications to composite materials and structures.

UNIT-IV:

STATICAL ASPECTS OF FATIGUE BEHAVIOUR: Low cycle and high cycle fatigue - Coffin- Manson's Relation –Transition Life – Cyclic strain hardening and softening – Analysis of load histories – Cycle counting techniques – Cumulative damage – Miner's theory, other theories.

UNIT-V:

Dynamic Fracture, Stress Corrosion Cracking, Corrosion Fatigue, Fatigue - Crack Propagation under Variable - Amplitude Load Fluctuation, Fatigue - Crack Initiation, Fatigue - Crack Propagation under Constant - Amplitude Load Fluctuation.

TEXT BOOKS:

- 1. Introduction to Fracture Mechanics by Hellan K, McGraw Hill
- 2. Fracture Vol II by Liebowitz, H.Editor, Academic Press
- 3. The Practical Use of Fracture Mechanics by Broek.D, Kluwer Academic Publisher.
- 4. Elementary Engineering Fracture Mechanics IV th Edition- Broek.D, Martinus Nijhoff.

www.FirstRanker.com R19 M.WYOM. Fix St Rambes Com

REFERENCE BOOKS:

- 1. Fatigue of Aircraft Structures by Barrpos. W., and Ripley, E.L., Pergamon Press, Oxford, 1983.
- 2. Mechanics of Fracture by Sih, C.G., Vol. 1 Sijthoff and Noordhoff International Publishing Co., Netherlands, 1989.
- 3. Fundamentals of Fracture Mechanics by Knott, J.F., Butterworth & Co., (Publishers) Ltd., London. 1983

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

DESIGN FOR MANUFACTURING & ASSEMBLY (Professional Elective - II)

Prerequisites: Manufacturing Processes, Engineering Materials

Course Objectives: The objective of course is identify the manufacturing constraints that influence the design of parts and part systems. Students will be introduced to the Design for Manufacturability (DFM) methodology, and will be motivated to understand infeasible or impractical designs.

Course Outcomes: At the end of the course, the student will be able to:

- Understand the quality aspects of design for manufacture and assembly
- Apply Boothroyd method of DFM for product design and assembly
- Apply the concept of DFM for casting, welding, forming and assembly
- Identify the design factors and processes as per customer specifications
- Apply the DFM method for a given product

UNIT - I:

Introduction: Design philosophy steps in Design process - General Design rules for manufacturability - basic principles of design Ling for economical production - creativity in design. Materials: Selection of Materials for design Developments in Material technology - criteria for material selection - Material selection interrelationship with process selection process selection charts.

UNIT - II:

Machining Process: Overview of various machining processes - general design rules for machining - Dimensional tolerance and surface roughness - Design for machining - Ease - Redesigning of components for machining ease with suitable examples. General design recommendations for machined parts. **Metal Casting**: Appraisal of various casting processes, selection of casting process, - general design considerations for casting - casting tolerances - use of solidification simulation in casting design - product design rules for sand casting.

UNIT - III:

Metal Joining: Appraisal of various welding processes, Factors in design of weldments - general design guidelines - pre and post treatment of welds - effects of thermal stresses in weld joints - design of brazed joints. Forging - Design factors for Forging - Closed dies forging design - parting lines of dies drop forging die design - general design recommendations. Extrusion & Sheet Metal Work: Design guidelines for extruded sections - design principles for Punching, Blanking, Bending, Deep Drawing - Keeler Goodman Forming Line Diagram - Component Design for Blanking.

PLASTICS: Viscoelastic and Creep behavior in plastics – Design guidelines for Plastic components – Design considerations for Injection Moulding.

UNIT-IV

Assemble Advantages: Development of the assemble process, choice of assemble method assemble advantages social effects of automation.

Automatic Assembly Transfer Systems: Continuous transfer, intermittent transfer, indexing mechanisms, and operator - paced free – transfer machine.

UNIT-V:

Design of Manual Assembly: Design for assembly fits in the design process, general design guidelines for manual assembly, development of the systematic DFA methodology, assembly efficiency, classification system for manual handling, classification system for manual insertion and

fastening, effect of part symmetry on handling time, effect of part thickness and size on handling time, effect of weight on handling time, parts requiring two hands for manipulation, effects of combinations of factors, effect of symmetry effect of chamfer design on insertion operations, estimation of insertion time.

TEXT BOOKS:

- 1. Assembly Automation and Product Design/ Geoffrey Boothroyd/ Marcel Dekker Inc., NY, 1992.
- 2. Engineering Design Material & Processing Approach/ George E. Deiter/McGraw Hill Intl. 2nd Ed. 2000.
- 3. Hand Book of Product Design/ Geoffrey Boothroyd/ Marcel and Dekken, N.Y. 1990.

REFERENCES:

- 1. Computer Aided Assembly London/ A Delbainbre/.
- 2. Product Design for Manufacturing and Assembly/ Geoffrey Boothroyd, Peter Dewhurst & Winston Ansthony Knight/CRC Press/2010.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

OPTIMIZATION TECHNIQUES & APPLICATIONS (Professional Elective - II)

Pre-requisites: Operations Research

Course Objectives: The main objectives of the course are: Learn

- Numerical optimization techniques for single variable and multi variable non-linear optimization problems.
- Sensitivity analysis on LPP queuing
- Simulation of annexing problem & inventory problem.
- Geometry cutting plane method & branch bound method for linear IPP.
- Meaning of stochastic programming problem simple problems for finding mean variance of random variables chance constrained algorithm.
- Formulation of GP model and solving it using arithmetic geometric inequality theorem.
- State of art nontraditional optimization technique, namely genetic algorithm simulated annealing & particle swarm optimization.

Course Outcomes: At the end of the course, the student is able to apply appropriate optimization techniques and solve.

- Based on the type of optimization problem like single variable or multivariable,
- Make sensitivity analysis to study effect of changes in parameters of LPP on the optimal solution without reworking.
- Simulate the system to estimate specified performance measures.
- Solve integer programming problem by either geometry cutting plane algorithm or branch band method.
- Apply chance constrained algorithm and solve stochastic linear programme.
- Formulate GP model and solve it.
- Solve given optimization problem by genetic algorithm or simulated annealing or PSO.

UNIT-I:

Single Variable Non-Linear Unconstrained Optimization: Elimination methods: Uni-Model functionits importance, Fibonacci method & Golden section method. Interpolation methods: Quadratic & Cubic interpolation methods.

UNIT-II:

Multi variable non-linear unconstrained optimization: Direct search methods – Univariant method, Pattern search methods – Powell's, Hook -Jeeves, Rosenbrock search methods. Gradient methods: Gradient of function& its importance, Steepest descent method, Conjugate direction methods: Fletcher-Reeves method & variable metric method.

UNIT-III:

Linear Programming: Formulation, Simplex method & Artificial variable optimization techniques: Big M & Two-phase methods. Sensitivity analysis: Changes in the objective coefficients, constants& coefficients of the constraints. Addition of variables, constraints. Simulation – Introduction – Typessteps – applications: inventory & queuing – Advantages and disadvantages

UNIT-IV:

Integer Programming: Introduction – formulation – Geometry cutting plane algorithm – Zero or one algorithm, branch and bound method

Stochastic Programming: Basic concepts of probability theory, random variables- distributions-mean, variance, correlation, co variance, joint probability distribution. Stochastic linear programming: Chance constrained algorithm.

UNIT-V:

Geometric Programming: Posynomials – Arithmetic - Geometric inequality – unconstrained G.P-constrained G.P (≤ type only)

Non-Traditional Optimization Algorithms: Genetics Algorithm-Working Principles, Similarities and Differences between Genetic Algorithm & Traditional Methods. Simulated Annealing-Working Principle-Simple Problems. Introduction to Particle Swarm Optimization (PSO) (very brief)

TEXT BOOKS:

- 1. Optimization theory & Applications by S. S. Rao, New Age International.
- 2. Optimization for Engineering Design by Kalyanmoy Deb, PHI

REFERENCE BOOKS:

- 1. Operations Research by S. D. Sharma
- 2. Operation Research by H. A. Taha, TMH
- 3. Optimization in operations research by R. L Rardin
- 4. Optimization Techniques by Benugundu & Chandraputla, Pearson Asia.
- 5. Optimization Techniques theory and practice by M. C. Joshi, K. M. Moudgalya, Narosa Publications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

COMPOSITE MATERIALS (Professional Elective - II)

Prerequisite: Structure and properties of composite materials and design procedures for composite structures

Course objectives:

To identify the properties of fiber and matrix materials used in commercial composites as well as some common manufacturing teaching and to predict the elastic properties of both long and short fiber and understand the stress-strain relations and establish the failure criteria for laminated structures.

Course Outcomes: At the end of the course the students will be able to

- Understanding of types, manufacturing processes, and applications of composite materials.
- Basic understanding of linear elasticity with emphasis on the difference between isotropic and anisotropic material behavior.
- Ability to analyze problems on macro and micro mechanical behavior of lamina
- Ability to analyze problems on macro mechanical behavior of laminate
- An ability to predict the loads and moments that cause an individual composite layer and a composite laminate to fail and to compute hygro thermal loads in composites.
- An ability to compute the properties of a composite laminate with any stacking sequence.

UNIT-I:

Introduction to Composite Materials: Introduction ,Classification Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, Carbon–Carbon Composites, Fiber-Reinforced Composites and nature-made composites, and applications .

UNIT-II:

Reinforcements: Fibers- Glass, Silica, Kevlar, carbon, boron, silicon carbide, and born carbide fibers. Particulate composites, Polymer composites, Thermoplastics, Thermosetts, Metal matrix and ceramic composites.

Manufacturing methods: Autoclave, tape production, moulding methods, filament winding, man layup, pultrusion, RTM.

UNIT-III:

Macro mechanical Analysis of a Lamina: Introduction, Definitions Stress, Strain, Elastic Moduli, Strain Energy. Hooke's Law for Different Types of Materials, Hooke's Law for a Two-Dimensional Unidirectional Lamina, Plane Stress Assumption, Reduction of Hooke's Law in Three Dimensions to Two Dimensions, Relationship of Compliance and Stiffness Matrix to Engineering Elastic Constants of a Lamina.

UNIT-IV:

Macro mechanical Analysis of Laminates: Introduction, Laminate Code, Stress-Strain Relations for a Laminate, In-Plane and Flexural Modulus of a Laminate, Hygrothermal Effects in a Laminate, Warpage of Laminates.

UNIT-V:

Failure, Analysis, and Design of Laminates: Introduction, Special Cases of Laminates, Failure Criterion for a Laminate, Design of a Laminated Composite, Other Mechanical Design Issues.

TEXT BOOKS:

www.FirstRanker.com R19 M. WYOM. Fix St Ram be s room

- 1. Mechanics of Composite Materials, Second Edition (Mechanical Engineering), By Autar K. Kaw, Publisher: CRC.
- 2. Engineering Mechanics of Composite Materials by Isaac and M Daniel, Oxford University Press, 1994.

REFERENCE BOOK:

1. Analysis and performance of fibre Composites by B. D. Agarwal and L. J. Broutman, Wiley-Interscience, New York, 1980.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

RESEARCH METHODOLOGY AND IPR

Prerequisite: None

Course Objectives:

- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to

- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I:

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II:

Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT-III:

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-IV:

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT-V:

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

TEXT BOOKS:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"

REFERENCES:

- 1. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 2. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 3. Mayall, "Industrial Design", McGraw Hill, 1992.
- 4. Niebel, "Product Design", McGraw Hill, 1974.
- 5. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 6. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 7. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

MMM.FirstRanker.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

ADVANCED DYNAMICS LAB (Lab - I)

List of Experiments:

- 1. Determination of damped natural frequency of vibration of the vibrating system with different viscous oils.
- 2. Determination of steady state amplitude of a forced vibratory system.
- 3. Static balancing using steel balls.
- 4. Determination of the magnitude and orientation of the balancing mass in dynamic balancing.
- 5. Field balancing of the thin rotors using vibration pickups.
- 6. Determination of the magnitude of gyroscopic couple, angular velocity of precession and representation of vectors.
- 7. Direct Kinematic analysis of a robot.
- 8. Inverse Kinematic analysis of a robot.
- 9. Trajectory planning of a robot in joint space scheme.
- 10. Palletizing operation using Robot programming.
- 11. To determine the characteristic curves of the Watt and Porter Governors.
- 12. To determine the characteristic curves of the Proell and Spring-loaded Governors
- 13. To determine the characteristics of Journal Bearings

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. TECH. I Year I Sem. (MACHINE DESIGN)

ADVANCED MATERIAL TESTING LAB (Lab - II)

List of Experiments:

- 1. Preparation and study of the Micro Structure of ferrous metals and alloys.
- 2. Preparation and study of the Microstructure of nonferrous metals and alloys.
- 3. Effect of tempering time on the hardness of quenched carbon steels.
- 4. Effect of tempering temperature on the hardness of a hardened carbon steels.
- 5. Preparation of metallic specimens by electro polishing.
- 6. Study of work hardening characteristics of a pure metal.
- 7. Determination of carbon percentage in the given ferrous specimen.
- 8. To determine the deflection of a Structural Member using Pin-jointed setup
- 9. Calculation of Shear Centre of a different cross-sections using Shear Centre setup
- 10. To determine the deflection of a Frame using Portal Frame Setup
- 11. Analyse the Stress Distribution of a Structural Member using Curved Beam apparatus.
- 12. Determination of natural frequency of given structure using FFT analyzer.
- 13. Diagnosis of a machine using FFT analyzer.

Note: Any 10 experiments may be performed from the above listed experiments.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. (MACHINE DESIGN)

ENGLISH FOR RESEARCH PAPER WRITING (Audit Course - I & II)

Prerequisite: None

Course objectives: Students will be able to:

- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title Ensure the good quality of paper at very firsttime submission

UNIT-I:

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

UNIT-III:

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:

key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:

skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

TEXT BOOKS/ REFERENCES:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. (MACHINE DESIGN)

DISASTER MANAGEMENT (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to

- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches,
- planning and programming in different countries, particularly their home country or the countries they work in

UNIT-I:

Introduction:

Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Disaster Prone Areas in India:

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT-II:

Repercussions of Disasters and Hazards:

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

UNIT-III:

Disaster Preparedness and Management:

Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT-IV:

Risk Assessment Disaster Risk:

Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

UNIT-V:

Disaster Mitigation:

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

www.FirstRanker.com R19 M.WYOM. Fix St Rambes Com

TEXT BOOKS/ REFERENCES:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, Pardeep Et. Al. (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi.
- 3. Goel S. L., Disaster Administration and Management Text and Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. (MACHINE DESIGN)

SANSKRIT FOR TECHNICAL KNOWLEDGE (Audit Course - I & II)

Prerequisite: None

Course Objectives:

- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to

- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:

Alphabets in Sanskrit,

UNIT-II:

Past/Present/Future Tense, Simple Sentences

UNIT-III:

Order, Introduction of roots,

UNIT-IV:

Technical information about Sanskrit Literature

UNIT-V:

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TEXT BOOKS/ REFERENCES:

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. (MACHINE DESIGN)

VALUE EDUCATION (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to

- Understand value of education and self- development
- Imbibe good values in students
- Let the should know about the importance of character

Course outcomes: Students will be able to

- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements

UNIT-II:

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

UNIT-III:

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline, Punctuality, Love and Kindness.

UNIT-IV:

Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

UNIT-V:

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation, Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

TEXT BOOKS/ REFERENCES:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. (MACHINE DESIGN)

CONSTITUTION OF INDIA (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP]
 under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct
 elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:

History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working), **Philosophy of the Indian Constitution:** Preamble, Salient Features.

UNIT-II:

Contours of Constitutional Rights & Duties: Fundamental Rights Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT-III:

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions.

UNIT-IV:

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT-V:

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

www.FirstRanker.com R19 M. WYOM. FixstRanker.com

TEXT BOOKS/ REFERENCES:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. (MACHINE DESIGN)

PEDAGOGY STUDIES (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:

- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:

- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-I:

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

UNIT-II:

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-III:

Evidence on the effectiveness of pedagogical practices, Methodology for the indepth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the scho curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

UNIT-IV:

Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes

UNIT-V:

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

TEXT BOOKS/ REFERENCES:

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

www.FirstRanker.com R19 M. WYOM. Fix St Ranker Ses Com

- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

MMM.FirstPanker.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. (MACHINE DESIGN)

STRESS MANAGEMENT BY YOGA (Audit Course - I & II)

Prerequisite: None

Course Objectives:

- · To achieve overall health of body and mind
- To overcome stress

Course Outcomes: Students will be able to:

- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT-I:

Definitions of Eight parts of yog. (Ashtanga)

UNIT-II:

Yam and Niyam.

UNIT-III:

Do's and Don't's in life.

- i) Ahinsa, satya, astheya, bramhacharya and aparigraha
- ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

UNIT-IV:

Asan and Pranayam

UNIT-V:

- i) Various yog poses and their benefits for mind & body
- ii) Regularization of breathing techniques and its effects-Types of pranayam

TEXT BOOKS/ REFERENCES:

- 1. 'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech. (MACHINE DESIGN)

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS (Audit Course - I & II)

Prerequisite: None Course Objectives:

- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to

- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students

UNIT-I:

Neetisatakam-Holistic development of personality

- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:

Neetisatakam-Holistic development of personality

- Verses- 52,53,59 (dont's)
- Verses- 71,73,75,78 (do's)

UNIT-III:

Approach to day to day work and duties.

- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:

Statements of basic knowledge.

- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:

- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 Verses 37,38,63

TEXT BOOKS/ REFERENCES:

- "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.