

EFFECTIVE FROM ACADEMIC YEAR 2019- 20 ADMITTED BATCH

R19 COURSE STRUCTURE AND SYLLABUS

I Year I Semester

Course Code	Course Title	L	Т	Ρ	Credits
Professional	Theory of Metal Cutting	3	0	0	3
Core - I		3	0	0	5
Professional	Theory of Metal Forming	3	0	0	3
Core - II		3	0	0	3
Professional Elective - I	1. Optimization Techniques & Applications				
	2. Advanced Manufacturing Processes	3	0	0	3
	3. Additive Manufacturing Technologies				
Professional Elective - II	1. Automation in Manufacturing				
	2. Precision Engineering	3	0	0	3
	3. Design for Manufacturing & Assembly				
MC	Research Methodology & IPR	2	0	0	2
Lab - I	Forming Lab	0	0	4	2
Lab - II	Advanced Manufacturing Processes & Metal Cutting	0	0	4	2
	Lab	0	0	4	2
Audit - I	Audit Course-1	2	0	0	0
	Total Credits	16	0	8	18

I Year II Semester

Course Code	Course Title	L	Т	Ρ	Credits
Professional	Advanced Casting & Welding Technology	3	0	0	3
Core - III		5	0	0	5
Professional	Advanced CAD/ CAM	3	0	0	3
Core - IV		5	U	0	5
	1. Manufacturing Systems: Simulation Modelling &				
Professional	Analysis	3	0	0	3
Elective - III	2. Computer Aided Process Planning	5	0	0	5
	3. Advanced Tool Design				
Professional Elective - IV	1. Flexible Manufacturing Systems				
	2. Vibration Analysis & Condition Monitoring	3	0	0	3
	3. Materials Technology				
	Mini Project with Seminar	0	0	4	2
Lab - III	Advanced Casting & Welding Lab	0	0	4	2
Lab - IV	Advanced CAD/ CAM Lab	0	0	4	2
Audit - II	Audit Course-2	2	0	0	0
	Total Credits	14	0	12	18

Audit Course 1 & 2:

- 1. English for Research Paper Writing
- 2. Disaster Management
- 3. Sanskrit for Technical Knowledge
- 4. Value Education
- 5. Constitution of India
- 6. Pedagogy Studies
- 7. Stress Management by yoga
- 8. Personality Development Through Life Enlightenment Skills

www.firstRanker.com

THEORY OF METAL CUTTING (Professional Core - I)

Pre- requisites: Engineering graphics, Mechanics of solids, Heat Transfer, Machine Tools, Strength of Materials, Material Science and Metallurgy.

Course Objectives:

- To impart the knowledge of basic methodology of metal cutting.
- To educate the student about the structure, working, forces involved in single point and multipoint cutting tools.
- To understand the concepts of tool life, machinability, wear, influence of heat.
- To design the jigs and fixtures required for machine tools.

Course Outcomes: Students can analyze the machining processes in terms of input variables like

• Speed, feed, depth of cut and their influence on surface roughness and performance measures, Metal removal rate, tool wear rate, machining time, energy, work done, heat distribution.

Unit – I:

Mechanics of Metal Cutting: Geometry of Metal Cutting Process, Chip formation, Chip thickness ratio, radius of chip curvature, cutting speed, feed and depth of cut – Types of chips chip breakers. Orthogonal and Oblique cutting processes – definition, Forces and energy calculations (Merchant's Analysis) – Power consumed – MRR- Effect of Cutting variables on Forces, Force measurement using Dynamometers.

Unit – II:

Single Point Cutting Tool: Various systems of specifications, single point cutting tool geometry and their inter-relation. Theories of formation of built-up edge and their effect, design of single point contact tools throwaway inserts.

Unit – III:

Multipoint Cutting Tool: Drill geometry, design of drills, Rake & Relief angles of twist drill, speed, feed and depth of cut, machining time, forces, milling cutters, cutting speed &feed machining time- design – from cutters.

Grinding: Specifications of grinding of grinding wheel, mechanics of grinding, Effect of Grinding conditions on wheel wear and grinding ratio. Depth of cut, speed, machining time, temperature power.

Unit – IV:

Tool Life and Tool Wear: Theories of tool wear – adhesion, abrasive and diffusion wear mechanisms, forms of wear, Tool life criteria and machinability index.

Types of sliding contact, real area of contact, laws of friction and nature of frictional force in metal cutting. Effect Tool angle, Economics, cost analysis, mean co-effect of friction.

Unit – V:

Cutting Temperature: Sources of heat in metal cutting, influence of metal conditions, Temperature distribution, zones, experimental techniques, analytical approach. Use of tool- work thermocouple for determination of temperature. Temperature distribution in Metal Cutting.

Cutting fluids: Functions of cutting fluids, types of cutting fluids, properties, selection of cutting fluids. **Cutting tool materials:** Historical developments, essential properties of cutting tool materials, types, composition and application of various cutting tool materials, selection of cutting tool materials. **TEXT BOOKS:**

- 1. Metal Cutting Principles/ MC Shaw / Oxford and IBH Publications, New Delhi, 1969.
- 2. Fundamentals of Machining /Boothryd/ Edward Amold publishers Ltd 1975.

REFERENCES:

- 1. Tool Design by David Son / Lacain/ Goud, Tata Me Graw Hill.
- 2. Fundamentals of Tool Design by Wilson fw, ASTME PHI 2010.
- 3. Technology of machine tools, Steve F. Krar, Arthur R. Gill and Peter Smid, McGraw Hill Education (India) Pt. Ltd., 2013.

www.firstRanker.com

THEORY OF METAL Forming (Professional Core - II)

Course Objectives:

- Illustrate capabilities and applications of metal forming processes.
- Forming load estimation during different metal forming processes.
- To analyze residual stresses.

Course Outcomes: Student will be able to:

- Understand fundamentals of metal forming and stress curves.
- Know various process parameters and applied loads in sheet metal working.
- Understand various forging techniques and defects in forging.
- Understand principles of rolling and stresses developed under rolling loads.
- Analyze Extrusion and drawing processes and associated stresses developed.

UNIT - I:

Fundamentals of Metal Forming: Classification of forming processes, mechanisms of metal forming: slab method, Upper and lower bound analysis, Deformation energy method and finite element method temperature of metal working, hot working, cold working, friction and lubricants.

UNIT - II:

Rolling of metals: Rolling processes, forces and geometrical relationship in rolling, simplified analysis, rolling load, rolling variables, theories of cold and hot rolling, problems and defects in rolling, torque and power calculations, Problems.

UNIT - III:

Forging: Classification of forging processes, forging of plate, forging of circular discs, open die and closed-die forging, forging defects, and powder metallurgy forging. problems on flow stress ,true strain and forging load.

Press tool design: Design of various press tools and dies like piercing dies, blanking dies, compound dies and progressive blanking dies, design of bending, forming and drawing dies.

UNIT - IV:

Extrusion: Classification, Hot Extrusion, Analysis of Extrusion process, defects in extrusion, extrusion of tubes, production of seamless pipes. Problems on extrusion load.

Drawing: Drawing of tubes, rods, and wires: Wire drawing dies, tube drawing process, analysis of wire, deep drawing and tube drawing .Problems on draw force.

UNIT - V:

Sheet Metal forming: Forming methods, Bending, stretch forming, spinning and Advanced techniques of Sheet Metal Forming, Forming limit criteria, defect in formed parts.

Advanced Metal forming processes: HERF, Electromagnetic forming, residual stresses, in-process heat treatment, and computer applications in metal forming. problems on Blanking force, Blank diagram in Cup Diagram, Maximum considering shear.

REFERENCES:

- 1. Fundamentals of Metal Forming Processes B.L. Juneja
- 2. Principles of Metal Working processes G.W. Rowe
- 3. ASM Metal Forming Hand book.

OPTIMIZATION TECHNIQUES AND APPLICATIONS (Professional Elective - I)

Pre-requisites: Operations Research

Course Objectives: The main objectives of the course are: Learn

- Numerical optimization techniques for single variable and multi variable non-linear optimization problems.
- Sensitivity analysis on LPP queuing
- Simulation of annexing problem & inventory problem.
- Geometry cutting plane method & branch bound method for linear IPP.
- Meaning of stochastic programming problem simple problems for finding mean variance of random variables chance constrained algorithm.
- Formulation of GP model and solving it using arithmetic geometric inequality theorem.
- State of art nontraditional optimization technique, namely genetic algorithm simulated annealing & particle swarm optimization.

Course Outcomes: At the end of the course, the student is able to apply appropriate optimization techniques and solve.

- Based on the type of optimization problem like single variable or multivariable,
- Make sensitivity analysis to study effect of changes in parameters of LPP on the optimal solution without reworking.
- Simulate the system to estimate specified performance measures.
- Solve integer programming problem by either geometry cutting plane algorithm or branch band method.
- Apply chance constrained algorithm and solve stochastic linear programme.
- Formulate GP model and solve it.
- Solve given optimization problem by genetic algorithm or simulated annealing or PSO.

UNIT- I

Single Variable Non-Linear Unconstrained Optimization: Elimination methods: Uni-Model functionits importance, Fibonacci method & Golden section method. Interpolation methods: Quadratic & Cubic interpolation methods.

UNIT- II

Multi variable non-linear unconstrained optimization: Direct search methods – Univariant method, Pattern search methods – Powell's, Hook -Jeeves, Rosenbrock search methods. Gradient methods: Gradient of function& its importance, Steepest descent method, Conjugate direction methods: Fletcher-Reeves method & variable metric method.

UNIT- III

Linear Programming: Formulation, Simplex method & Artificial variable optimization techniques: Big M & Two-phase methods. Sensitivity analysis: Changes in the objective coefficients, constants& coefficients of the constraints. Addition of variables, constraints. Simulation – Introduction – Typessteps – applications: inventory & queuing – Advantages and disadvantages

UNIT-I V

Integer Programming: Introduction – formulation – Geometry cutting plane algorithm – Zero or one algorithm, branch and bound method

Stochastic Programming: Basic concepts of probability theory, random variables- distributions-mean, variance, correlation, co variance, joint probability distribution. Stochastic linear programming: Chance constrained algorithm.

UNIT- V

Geometric Programming: Posynomials – Arithmetic - Geometric inequality – unconstrained G.Pconstrained G.P (\leq type only)

Non-Traditional Optimization Algorithms: Genetics Algorithm-Working Principles, Similarities and Differences between Genetic Algorithm & Traditional Methods. Simulated Annealing-Working Principle-Simple Problems. Introduction to Particle Swarm Optimization (PSO) (very brief)

Text Books:

- 1. Optimization theory & Applications by S.S. Rao, New Age International.
- 2. Optimization for Engineering Design by Kalyanmoy Deb, PHI

Reference Books:

- 1. Operations Research by S.D. Sharma
- 2. Operation Research by H. A. Taha, TMH
- 3. Optimization in operations research by R. L Rardin
- 4. Optimization Techniques by Benugundu & Chandraputla, Pearson Asia.
- 5. Optimization Techniques theory and practice by M.C. Joshi, K. M. Moudgalya, Narosa Publications.

www.firstRanker.com

ADVANCED MANUFACTURING PROCESSES (Professional Elective - I)

Prerequisites: Production Technology, Machine Tools, Metal Cutting, Material Science. **Course Objectives:**

- To make acquainted the various unconventional manufacturing processes
- To know about the applications of advanced manufacturing processes (which are exceptional)
- To encourage the students for developing the models of Advanced Manufacturing Processes

Course Outcomes:

- At the end of the course, the student will be able to understand the working principle of Electron beam, laser beam and laser beam processes.
- Able to understand different types of composite material characteristics, types of micro & macro machining processes.
- Understand the e-manufacturing & nano materials.

UNIT- I

Surface treatment: Scope, Cleaners, Methods of cleaning, Surface coating types, and ceramic and organic methods of coating, economics of coating. Electro forming, Chemical vapour deposition, thermal spraying, Ion implantation, diffusion coating, Diamond coating and cladding.

UNIT- II

Non-Traditional Machining: Introduction, need, AJM, Parametric Analysis, Process capabilities, USM – Mechanics of cutting, models, Parametric Analysis, WJM –principle, equipment, process characteristics, performance, EDM – principles, equipment, generators, analysis of R-C circuits, MRR, Surface finish, WEDM.

UNIT- III

Laser Beam Machining – Principle of working, equipment, Material removal rate, Process parameters, performance characterization, Applications.

Plasma Arc Machining – Principle of working, equipment, Material removal rate, Process parameters, performance characterization, Applications,

Electron Beam Machining - Principle of working, equipment, Material removal rate, Process parameters, performance characterization, Applications.

Electro Chemical Machining – Principle of working, equipment, Material removal rate, Process parameters, performance characterization, Applications.

UNIT- IV

Processing of ceramics: Applications, characteristics, classification. Processing of particulate ceramics, Powder preparations, consolidation, Drying, sintering, Hot compaction, Area of application, finishing of ceramics.

Processing of Composites: Composite Layers, Particulate and fiber reinforced composites, Elastomers, Reinforced plastics, MMC, CMC, Polymer matrix composites.

UNIT- V

Fabrication of Microelectronic devices: Crystal growth and wafer preparation, Film Deposition oxidation, lithography, bonding and packaging, reliability and yield, Printed Circuit boards, computer aided design in microelectronics, surface mount technology, Integrated circuit economics.

E-Manufacturing, nanotechnology, micromachining and High-speed Machining, basic principles, working, applications, advantages.

TEXT BOOKS:

- 1. Manufacturing Engineering and Technology by Kalpakijian, Adisson Wesley, 1995.
- 2. Foundation of MEMS by Chang Liu, Pearson, 2012.
- 3. Advanced Machining Processes by V. K. Jain, Allied Publications.

REFERENCE BOOKS:

- 1. Process and Materials of Manufacturing by R. A. Lindburg, 4th edition, PHI 1990.
- 2. Introduction to Manufacturing Processes by John A Schey, Mc Graw Hill.
- 3. Micro Machining of Engineering Materials by J. Mc Geough, CRC Press.
- 4. Non-Traditional Manufacturing Processes by Gary F Benedict, CRC Press.
- 5. Advanced Methods of Machining by J. A Mc Geough, Springer.

www.FirstRanker.com

ADDITIVE MANUFACTURING TECHNOLOGIES (Professional Elective - I)

Prerequisites: Basics of Manufacturing, Basic knowledge in Calculus, Physics, Thermodynamics, and Chemistry

Course Objectives: The objective of the Course is to study methods used in additive manufacturing, theories governing the additive manufacturing, give information on materials, explain relations between materials to be processed and methods of additive manufacturing with introduction to common machines used for the technology and show applications and business opportunities with future directions.

Course outcomes:

- Understand the fundamentals for additive manufacturing and how it is different and discuss about various types of liquid based, solid based and powder-based AM technologies.
- Understand the various types of Pre-processing, processing, post-processing errors in AM. Also to know the various types of data formats and software's used in AM.
- Know the various applications of AM in design analysis, aerospace, automotive, biomedical and other fields.

UNIT-I:

Introduction: Prototyping fundamentals: Need for time compression in product development, Need for Additive Manufacturing, Historical development, Fundamentals of Additive Manufacturing, AM Process Chain, Advantages and Limitations of AM, Commonly used Terms, Classification of AM process, Fundamental Automated Processes: Distinction between AM and CNC, other related technologies.

UNIT-II:

Liquid-based AM Systems: Stereo lithography Apparatus (SLA): Models and specifications, Process, working principle, photopolymers, photo polymerization, Layering technology, laser and laser scanning, Applications, Advantages and Disadvantages, Case studies. Solid ground curing (SGC): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Poly jet: Process, Principle, working principle, Applications, Advantages and Disadvantages, Case studies. Micro fabrication.

Solid-based AM Systems: Laminated Object Manufacturing (LOM): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Fused Deposition Modeling (FDM): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Multi-Jet Modelling (MJM): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies.

UNIT-III:

Powder Based AM Systems: Selective laser sintering (SLS): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Three-dimensional Printing (3DP): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies.

Laser Engineered Net Shaping (LENS): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Electron Beam Melting (EBM): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies

Rapid Tooling: Introduction to Rapid Tooling (RT), Conventional Tooling Vs RT, Need for RT. Rapid Tooling Classification: Indirect Rapid Tooling Methods: Arc Spray Metal Deposition, Investment

Casting, Sand Casting, 3D Keltool process. Direct Rapid Tooling: Direct AIM, LOM Tools, DTM Rapid Tool Process, EOS Direct Tool Process and Direct Metal Tooling using 3DP.

UNIT-IV:

AM Data Formats: Reengineering for Digital Representation, STL Format, STL File Problems, Consequence of Building Valid and Invalid Tessellated Models, STL file Repairs: Generic Solution, Other Translators, Newly Proposed Formats. Mesh Refining by Sub division Techniques.

AM Software's: Need for AM software, Features of various AM software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, Surgi Guide, 3-matic, Simplant, Mesh Lab.

UNIT-V:

AM Applications: Application – Material Relationship, Application in Design, Application in Engineering, Analysis and Planning, Aerospace Industry, Automotive Industry, Jewelry Industry, Coin Industry, GIS application, Arts and Architecture. RP Medical and Bioengineering Applications: Planning and simulation of complex surgery, Customized Implants & Prosthesis, Design and Production of Medical Devices, Forensic Science and Anthropology, Visualization of Biomolecules. Web Based Rapid Prototyping Systems

TEXT BOOK:

1. Rapid prototyping: Principles and Applications by Chua C.K., Leong K.F. and LIM C.S, World Scientific publications, Third Edition, 2010.

REFERENCE BOOKS:

- 1. Rapid Manufacturing by D.T. Pham and S.S. Dimov, Springer, 2001.
- 2. Wholers Report 2000 by Terry Wohlers, Wohlers Associates, 2000.
- 3. Rapid Prototyping & Engineering Applications by Frank W.Liou, CRC Press, Taylor & Francis Group, 2011.

Automation in Manufacturing (Professional Elective - II)

Prerequisites: Production Technology, Machine Tools, Operations Research **Course Objectives**:

- Lower Cost and Improve Time-to-Market
- Automation investment life-cycle analysis
- Empowered teams of talented employees
- Partnering with automation suppliers
- On-line process analysis
- Procedural process control
- Information integration and data warehousing

Course Outcomes: Upon completion of this course the student will be able to:

- Illustrate the basic concepts of automation in machine tools.
- Analyze various automated flow lines, Explain assembly systems and line balancing methods.
- Describe the importance of automated material handling and storage systems.
- Interpret the importance of adaptive control systems, automated inspection systems.

UNIT-I:

Introduction to Automation: Automation in Production Systems-Automated Manufacturing Systems, Computerized Manufacturing Support Systems, Reasons for Automation, Automation Principles and Strategies. Manufacturing operations, Production Concepts and Mathematical Models. Costs of Manufacturing Operations, Basic Elements of an Automated Systems, Advanced Automation Functions, Levels of automation.

UNIT-II:

Introduction to Material Handling: Overview of Material Handling Equipment, Considerations in Material Handling System Design, the 10 Principles of Material Handling. Material Transport Systems, Automated Guided Vehicle Systems, Monorails and other Rail Guided Vehicles, Conveyor Systems, Analysis of Material Transport Systems. Storage Systems, Storage System Performance, Storage Location Strategies, Conventional Storage Methods and Equipment, Automated Storage Systems, Engineering Analysis of Storage Systems. Automatic data capture-overview of Automatic identification methods, bar code technology, other ADC technologies.

UNIT - III:

Manual Assembly Lines - Fundamentals of Manual Assembly Lines, Alternative Assembly Systems, Design for Assembly, Analysis of Single Model Assembly Lines, Line balancing problem, largest candidate rule, Kilbridge and Wester method, and Ranked Positional Weights Method, Mixed Model Assembly Lines, Considerations in assembly line design.

UNIT-IV:

Transfer lines, Fundamentals of Automated Production Lines, Storage Buffers, and Applications of Automated Production Lines. Analysis of Transfer Lines with no Internal Storage, Analysis of Transfer lines with Storage Buffers.

UNIT- V

Automated Assembly Systems, Fundamentals of Automated Assembly Systems, Design for Automated Assembly, and Quantitative Analysis of Assembly Systems - Parts Delivery System at Work Stations, Multi- Station Assembly Machines, Single Station Assembly Machines, Partial Automation.

TEXT BOOKS:

1. Automation, Production systems and computer integrated manufacturing by Mikel P. Groover, Pearson Education.

REFERENCE BOOKS:

- 1. CAD CAM: Principles, Practice and Manufacturing Management by Chris Mc Mohan, Jimmie Browne, Pearson edu. (LPE)
- 2. Automation by Buckinghsm W, Haper & Row Publishers, New York, 1961
- 3. Automation for Productivity by Luke H.D, John Wiley & Sons, New York, 1972.

www.FirstRanker.com

PRECISION ENGINEERING (Professional Elective - II)

Pre-requisites: Machine Tools, Metrology

Course Objectives:

- To give the basic precision engineering methodology and state-of-the-art concepts for designing high-precision CNC machines and products.
- The course is specifically tailored to teach the novel design principles leading to improved machine performance and reliability.
- To apply the acquired knowledge to other design efforts and fields as well

Course Outcomes: At the end of the course, the student will be able to:

- Apply fits and tolerances for parts and assemblies according to ISO standards.
- Apply selective assembly concept for quality and economic production.
- Assign tolerances using principles of dimensional chains for individual features of a part or assembly.
- Evaluate the part and machine tool accuracies.
- Analyze the causes for dimensional and geometrical errors prior to and during machining and suggest remedies

UNIT- I

Concepts of Accuracy: Introduction – Concept of Accuracy of Machine Tools – Spindle and Displacement Accuracies – Accuracy of numerical Control Systems – Errors due to Numerical Interpolation Displacement Measurement System and Velocity Lags.

Geometric Dimensioning and Tolerance: Tolerance Zone Conversions – Surfaces, Features, Features of Size, Datum Features – Datum Oddly Configured and Curved Surfaces as Datum Features, Equalizing Datum –Datum Feature of Representation – Form Controls, Orientation Controls – Logical Approach to Tolerance.

UNIT- II

Datum Systems: Design of freedom, Grouped Datum Systems – different types, two and three mutually perpendicular grouped datum planes; Grouped datum system with spigot and recess, pin and hole; Grouped Datum system with spigot and recess pair and tongue – slot pair – Computation of Transnational and rotational accuracy, Geometric analysis and application.

UNIT- III

Tolerance Analysis: Process Capability, Mean, Variance, Skewness, Kurtosis, Process Capability Metrics, C_p, C_{pk}, Cost aspects, Feature Tolerances, Geometric Tolerances.

Tolerance Charting Techniques: Operation Sequence for typical shaft type of components, Preparation of Process drawings for different operations, Tolerance worksheets and central analysis, Examples. Design features to facilitate machining; Datum Features – functional and manufacturing. Components design – Machining considerations, Redesign for manufactured parts examples

UNIT- IV

Surface finish, Review of relationship between attainable tolerance grades and different machining process. Cumulative effect of tolerances sure fit law, normal law and truncated normal law.

UNIT- V

MEASURING SYSTEMS PROCESSING: In process or in-situ measurement of position of processing point-Post process and on-machine measurement of dimensional features and surface-mechanical and optical measuring systems.

TEXT BOOKS:

- 1. Precision Engineering in Manufacturing by Murthy R. L., New Age International (P) limited, 1996.
- 2. Geometric Dimensioning and Tolerancing by James D. Meadows, Marcel Dekker Inc. 1995.

REFERENCE BOOKS:

1. Engineering Design – A systematic Approach by Matousek, Blackie & Son Ltd, London.

www.FirstRanker.com

DESIGN FOR MANUFACTURING AND ASSEMBLY (Professional Elective - II)

Prerequisites: Manufacturing Processes, Engineering Materials

Course Objectives: The objective of course is identify the manufacturing constraints that influence the design of parts and part systems. Students will be introduced to the Design for Manufacturability (DFM) methodology, and will be motivated to understand infeasible or impractical designs.

Course Outcomes: At the end of the course, the student will be able to:

- Understand the quality aspects of design for manufacture and assembly
- Apply Boothroyd method of DFM for product design and assembly
- Apply the concept of DFM for casting, welding, forming and assembly
- Identify the design factors and processes as per customer specifications
- Apply the DFM method for a given product

UNIT - I:

Introduction: Design philosophy steps in Design process - General Design rules for manufacturability - basic principles of design Ling for economical production - creativity in design. Materials: Selection of Materials for design Developments in Material technology - criteria for material selection - Material selection interrelationship with process selection process selection charts.

UNIT - II:

Machining Process: Overview of various machining processes - general design rules for machining -Dimensional tolerance and surface roughness - Design for machining - Ease - Redesigning of components for machining ease with suitable examples. General design recommendations for machined parts. **Metal Casting**: Appraisal of various casting processes, selection of casting process, general design considerations for casting - casting tolerances - use of solidification simulation in casting design - product design rules for sand casting.

UNIT - III:

Metal Joining: Appraisal of various welding processes, Factors in design of weldments - general design guidelines - pre and post treatment of welds - effects of thermal stresses in weld joints - design of brazed joints. Forging - Design factors for Forging - Closed dies forging design - parting lines of dies drop forging die design - general design recommendations. Extrusion & Sheet Metal Work: Design guidelines for extruded sections - design principles for Punching, Blanking, Bending, Deep Drawing - Keeler Goodman Forming Line Diagram - Component Design for Blanking.

PLASTICS: Viscoelastic and Creep behavior in plastics – Design guidelines for Plastic components – Design considerations for Injection Moulding.

UNIT-IV

Assemble Advantages: Development of the assemble process, choice of assemble method assemble advantages social effects of automation.

Automatic Assembly Transfer Systems: Continuous transfer, intermittent transfer, indexing mechanisms, and operator - paced free – transfer machine.

UNIT-V:

Design of Manual Assembly: Design for assembly fits in the design process, general design guidelines for manual assembly, development of the systematic DFA methodology, assembly efficiency, classification system for manual handling, classification system for manual insertion and

fastening, effect of part symmetry on handling time, effect of part thickness and size on handling time, effect of weight on handling time, parts requiring two hands for manipulation, effects of combinations of factors, effect of symmetry effect of chamfer design on insertion operations, estimation of insertion time.

TEXT BOOKS:

- 1. Assembly Automation and Product Design/ Geoffrey Boothroyd/ Marcel Dekker Inc., NY, 1992.
- Engineering Design Material & Processing Approach/ George E. Deiter/McGraw Hill Intl. 2nd Ed. 2000.
- 3. Hand Book of Product Design/ Geoffrey Boothroyd/ Marcel and Dekken, N.Y. 1990.

REFERENCES:

- 1. Computer Aided Assembly London/ A Delbainbre/.
- 1. Product Design for Manufacturing and Assembly/ Geoffrey Boothroyd, Peter Dewhurst & Winston Ansthony Knight/CRC Press/2010

www.FirstRanker.com

FORMING LAB (Lab - I)

List of Experiments:

- 1. Study of the construction and operating parameters of metal spinning Lathe.
- 2. Study of the water hammer equipment and hydrostatic extrusion setup.
- 3. Studies on PLC programming for Sheet Forming
- 4. Ericksen Cup Test Plot Forming Limit Diagram
- 5. To study the spring back effect on Bending Test
- 6. Deep Drawing of Cups For a given size of the cup, find the size of the blank and draw the cup.
- 7. Washer Manufacturing on Mechanical/ Hydraulic Press
- 8. Extrusion of cylindrical billets through dies of different included angles and exit diameters and their effect on extrusion pressure.
- 9. Practice and study of blanking and punching process and their characteristic features on mechanical press with existing dies.
- 10. Experiment on Roll Pass Designs
- 11. Plastic Bottle and Cap Manufacturing

Note: Any 8 experiments may be chosen from the above list.

www.FirstRanker.com

ADVANCED MANUFACTURING PROCESSES & METAL CUTTING LAB (Lab - II)

List of Experiments:

- 1 Study of the morphology of chips produced from different materials sand machining processes.
- 2 Effect of tool geometry on chip flow direction in simulated orthogonal cutting conditions.
- 3 Study of cutting ratio/chip thickness ratio in simulated orthogonal cutting with different materials and tool geometry.
- 4 Evaluations of tool face temperature with thermocouple method.
- 5 Roughness of machined surface. Influence of tool geometry and feed rate.
- 6 Extrusion of cylindrical billets through dies of different included angles and exit diameters and their effect on extrusion pressure.
- 7. Practice and study of blanking and punching process and their characteristic features on mechanical press with existing dies.
- 8 Study of operation of tool and cutter grinder, twist drill grinder, Centreless grinder
- 9 Determination of cutting forces in turning
- 10 Inspection of parts using tool makers microscope, roughness and form tester
- 11 Experimental Study of MRR on EDM
- 12 Experimental Study of TWR on EDM
- 13 Experimental Study of Surface Roughness on EDM
- 14 Experimental Study on ECM
- 15 Experimental Study on 3D Printing

Note: Conduct any Ten exercises from the list given above

RESEARCH METHODOLOGY AND IPR

Prerequisite: None

Course Objectives:

- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to

- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I:

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II:

Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT-III:

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-IV:

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT-V:

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

TEXT BOOKS:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction".

REFERENCES:

- 1. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 2. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 3. Mayall, "Industrial Design", McGraw Hill, 1992.
- 4. Niebel, "Product Design", McGraw Hill, 1974.
- 5. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 6. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 7. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

www.FirstRanker.com

ENGLISH FOR RESEARCH PAPER WRITING (Audit Course - I & II)

Prerequisite: None

Course objectives: Students will be able to:

- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title Ensure the good quality of paper at very firsttime submission

UNIT-I:

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

UNIT-III:

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:

key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:

skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

TEXT BOOKS/ REFERENCES:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

DISASTER MANAGEMENT (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to

- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches,
- planning and programming in different countries, particularly their home country or the countries they work in

UNIT-I:

Introduction:

Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Disaster Prone Areas in India:

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT-II:

Repercussions of Disasters and Hazards:

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

UNIT-III:

Disaster Preparedness and Management:

Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT-IV:

Risk Assessment Disaster Risk:

Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

UNIT-V:

Disaster Mitigation:

Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

TEXT BOOKS/ REFERENCES:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, Pardeep Et. Al. (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi.
- 3. Goel S. L., Disaster Administration and Management Text and Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

www.firstRanker.com

SANSKRIT FOR TECHNICAL KNOWLEDGE (Audit Course - I & II)

Prerequisite: None

Course Objectives:

- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to

- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:

Alphabets in Sanskrit,

UNIT-II:

Past/Present/Future Tense, Simple Sentences

UNIT-III:

Order, Introduction of roots,

UNIT-IV:

Technical information about Sanskrit Literature

UNIT-V:

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TEXT BOOKS/ REFERENCES:

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

VALUE EDUCATION (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to

- Understand value of education and self- development
- Imbibe good values in students
- Let the should know about the importance of character

Course outcomes: Students will be able to

- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements

UNIT-II:

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

UNIT-III:

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline, Punctuality, Love and Kindness.

UNIT-IV:

Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

UNIT-V:

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation, Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

TEXT BOOKS/ REFERENCES:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

CONSTITUTION OF INDIA (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:

History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working), **Philosophy of the Indian Constitution:** Preamble, Salient Features.

UNIT-II:

Contours of Constitutional Rights & Duties: Fundamental Rights Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT-III:

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions.

UNIT-IV:

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT-V:

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

TEXT BOOKS/ REFERENCES:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

www.firstRanker.com

PEDAGOGY STUDIES (Audit Course - I & II)

Prerequisite: None

Course Objectives: Students will be able to:

- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:

- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-I:

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

UNIT-II:

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-III:

Evidence on the effectiveness of pedagogical practices, Methodology for the indepth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the scho curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

UNIT-IV:

Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes

UNIT-V:

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

TEXT BOOKS/ REFERENCES:

- Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

www.FirstRanker.com

STRESS MANAGEMENT BY YOGA (Audit Course - I & II)

Prerequisite: None

Course Objectives:

- To achieve overall health of body and mind
- To overcome stress

Course Outcomes: Students will be able to:

- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT-I:

Definitions of Eight parts of yog. (Ashtanga)

UNIT-II: Yam and Niyam.

UNIT-III:

Do`s and Don't's in life. i) Ahinsa, satya, astheya, bramhacharya and aparigraha ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

UNIT-IV:

Asan and Pranayam

UNIT-V:

i) Various yog poses and their benefits for mind & body

ii) Regularization of breathing techniques and its effects-Types of pranayam

TEXT BOOKS/ REFERENCES:

- 1. 'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS (Audit Course - I & II)

Prerequisite: None

Course Objectives:

- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to

- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students

UNIT-I:

Neetisatakam-Holistic development of personality

- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:

Neetisatakam-Holistic development of personality

- Verses- 52,53,59 (dont's)
- Verses- 71,73,75,78 (do's)

UNIT-III:

Approach to day to day work and duties.

- Shrimad Bhagwad Geeta: Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:

Statements of basic knowledge.

- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 Verses 13, 14, 15, 16, 17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:

- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 Verses 37,38,63

TEXT BOOKS/ REFERENCES:

- 1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.