www.FirstRanker.com

Subject Code: B13102/R13

I B. Pharmacy I Semester Regular Examinations Feb. - 2014 REMEDIAL MATHEMATICS-I

Time: 3 hours

Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Two men on the same side of a building notice that the angles of elevation to the top of the building are 30° and 60° respectively. If the height of the building is known to be 80 m , find the distance between the two men.
(ii) Find the equation of straight line passing through $(1,1)$ and perpendicular to the line passing through the points $(3,5)$ and $(-6,-2)$.
(iii) Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.

(v) Form the differential equation from the relation $\mathrm{y}=\mathrm{ax}+\mathrm{bx}{ }^{2}$.
(vi) Find the term independent of x in the expansion of $\left(x^{2}-\frac{1}{x}\right)^{9}$.

$$
[4+4+4+4+3+3]
$$

PART -B

2.(a) The fourth term of a geometric progression exceeds the second term by 24 and the sum of second and third term is 6 . Findthe progression.
(b) If $\sin \alpha=\frac{3}{5}, \cos \beta=\frac{9}{41}$, find the value of $\sin (\alpha-\beta)$ and $\sin (\alpha+\beta)$.
3.(a) Prove that $\cos \frac{\pi}{9} \cdot \cos \frac{2 \pi}{9} \cdot \cos \frac{3 \pi}{9} \cdot \cos \frac{4 \pi}{9}=\frac{1}{2^{4}}$.
(b) Solve the system of equations by Cramer's rule: $x-y+z=4 ; 2 x+3 y+3 z=5$ and $3 x-2 y+z=7$.
4.(a) Find the area of a triangle formed by the points $(1,2),(3,-4)$ and $(-2,0)$.
(b) Find the derivative of $x^{2} \operatorname{cosec} x$.
5.(a) Find $\underset{x \rightarrow 0}{\lim } \frac{\sin \left(x^{2}\right)}{x \sin x}$
(b) Find the angle between the lines $3 x-5 y+7=0$ and $2 x-y+4=0$.
6.(a) Solve $x y^{\prime}+y+4=0$.
(b) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos ^{2} x} d x$.
7.(a) Evaluate $\int x \cos ^{2} x d x$.
(b) Solve $(x+1) \frac{d y}{d y}+1=2 e^{-y}$.

