Code No: B1102/R10

I B.Pharmacy I Semester Supplementary Examinations, Feb. 2015 MATHEMATICS-I
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the value of $9 \mathrm{P}_{4}, 7 \mathrm{P}_{3}$, and $5 \mathrm{P}_{2}$.
(b) . Evaluate $\left|\begin{array}{ccc}2 & 9 & 1 \\ 0 & 3 & 0 \\ 5 & -2 & 2\end{array}\right|$
2. (a) Find the terms independent of x in the expansion $\left(3 x-\frac{x^{3}}{6}\right)^{7}$
(b) Solve the following equations by using Cramer's Rule $\mathrm{x}+2 \mathrm{y}-\mathrm{z}=1,3 \mathrm{x}+5 \mathrm{y}-2 \mathrm{z}=5$, $2 x+6 y+3 z=-2$
3. (a) If α and β are complementary angles such that $q \sin \alpha=p$, then find the value of $(\sin \alpha \cos \beta-\cos \alpha \sin \beta)$.
(b) If 3 A is not an odd multiple of $\frac{\pi}{2}, \tan 3 A=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}$.
4. (a) Suppose that $x=\tan A, y=\tan B, z=\tan C$ and none of $A-B, B-C$, $\mathrm{C}-\mathrm{A}$ is an odd multiple of $\frac{\pi}{2}$. Then prove that $\sum\left(\frac{x-y}{1+x y}\right)=\prod\left(\frac{x-y}{1+x y}\right)$.
(b) Prove that $\sin \frac{\pi}{5} \cdot \sin \frac{2 \pi}{5} \cdot \sin \frac{3 \pi}{5} \cdot \sin \frac{4 \pi}{5}=\frac{5}{16}$
5. (a) Find the orthocenter of the triangle with the vertices $(-2,-1)(6,-1)$ and $(2,5)$
(b) If θ is the angle between the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ then find the value of $\sin \theta$ when $\mathrm{a}>\mathrm{b}$
6. (a) Find the circumeenter of the triangle whose sides are $3 x-y-5=0$, $x+2 y-4=0$ and $5 x+3 y+1=0$.
(b) Find the equation of the locus of a point which is at a distance 3 from ($-1,3$) in a plane.
7. (a) Show that $f(x)=[x](x \in R)$ is continuous at only those real numbers that are not integers
(b) If $X=a \cos ^{3} t, Y=a \sin ^{3} t$ then find $\frac{d y}{d x}$
8. (a) Is f continuous at $\mathrm{X}=0$ where $f(x)=\left\{\begin{array}{l}\frac{\sin 2 x}{x} \text { if } x ? 0 \\ 1^{\text {if }} x=0\end{array}\right.$
(b) If $Y=\tan ^{-1} \sqrt{\frac{1-x}{1+x}}(|x|<1)$ then find $\frac{d y}{d x}$
