I B. Pharmacy I Semester Supplementary Examinations, Jan/Feb - 2018 REMEDIAL MATHEMATICS-I

Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) If $\mathrm{A}=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ then show that $\mathrm{A}(\mathrm{A}-3 \mathrm{I})(\mathrm{A}-15 \mathrm{I})=0$
b) Find the value of (i) $\cos ^{2} 45-\sin ^{2} 15$ (ii) $\sin ^{2} 75-\sin ^{2} 15$
c) Find the value of p if the lines $3 x+4 y=5,2 x+3 y=4, p x+4 y=6$ are concurrent
d) Find right and left derivatives of the function $f(x)=\left\{\begin{array}{ll}\frac{x}{1+e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ at zero
e) Evaluate $\int_{0}^{a}\left(a^{2} x-x^{3}\right) d x$
f) Find Laplace transform of $\operatorname{sint} \sin 2 t$

PART -B

2. a) Resolve $\frac{2 x+3}{5(x+2)(2 x+1)}$ into partial fractions.
b) Show that $\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a b+b c+c a)$.
3. a) From the top of the hill 200 meters high, the angle of depression of the top and bottom of a pillar on the level ground are 30° and 60° respectively. Find the height of the pillar.
b) In a triangle ABC , prove that $\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}-\cos ^{2} \frac{C}{2}=2 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$
4. a) Find the transformed equation of $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$ when the axes rotated through an angle $\frac{\pi}{6}$.
b) Find the equation of the straight line passing through the intersection of the lines
$x+y+1=0$ and $2 x-y+5=0$ and through the point $(5,-2)$.
5. a) If $x=a(t-\sin t), y=a(1+\cos t)$ find $\frac{d y}{d x}$.
b) Compute the following limits (i) $\underset{x \rightarrow 0}{L t} \frac{\sin (a+b x)-\sin (a-b x)}{x}$ (ii) $\underset{x \rightarrow a}{L t} \frac{\tan x-\operatorname{tana}}{x-a}$
6. a) Evaluate $\int_{a}^{b} \sqrt{(x-a)(b-x)} d x$
b) Evaluate $\int \frac{1}{4+5 \sin x} d x$
7. a) Form the differential equation by eliminating arbitrary constants A, B from the equation $y=A \cos 3 x+B \sin 3 x$
b) Solve (i) $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$ (ii) $3 e^{x} \operatorname{tany} d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$
