I B. Pharmacy I Semester Supplementary Examinations, Jan/Feb - 2018 REMEDIAL MATHEMATICS-I

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART - A

1. a) If $\left[\begin{array}{cc}x-3 & 2 y-8 \\ z+2 & 6\end{array}\right]=\left[\begin{array}{cc}5 & 2 \\ -2 & a-4\end{array}\right]$, then find x, y, z, a.
b) Find the value of $\tan 20+\tan 25+\tan 20 \tan 25$.
c) What is the angle between the lines $x+y+1=0$ and $x=5$?
d) Find $\underset{x \rightarrow 2}{ } \operatorname{Lt} \frac{x^{2}\left(x^{2}-4\right)}{x-2}$
e) Evaluate $\int \frac{2 x^{3}-3 x+5}{2 x^{2}} d x$ for $x>0$.
f) Find Laplace transform of $\left(1+t^{2}\right)^{2}$.
g) If $\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$ then show that $(A-2 I)(A-3 I)=0$.

PART - B

2. a) Resolve $\frac{x+3}{(1-x)^{2}\left(1+x^{2}\right)}$ into partial fractions.
b) Solve the system of equations $2 x+y-z=1, x-y+z=2,5 x+5 y-$ $4 z=3$ by Cramer's rule
3. a) A person walking 20 mts towards a chimney in a horizontal line through its base observes that its angle of elevation changes from 30° to 45°. Find the height of the Chimney.
b) In a triangle ABC , prove that $\sum \frac{\cos (B-C)}{\sin B \sin C}=4$.
4. a) Find the point on the straight line $3 x+y+4=0$ which is equidistance from the points $(-5,6)$ and $(3,2)$.
b) Transform the equation $\frac{x}{a}+\frac{y}{b}=1$ into normal form where $a>0$ and $b>0$. If perpendicular distance of the straight line from the origin is p. Deduce $\frac{1}{p^{2}}=\frac{1}{a^{2}}+$ $\frac{1}{b^{2}}$.
5. a) If $y=x^{\tan x}+(\sin x)^{\cos x}$ find $\frac{d y}{d x}$
b) Find the derivative of $\tan ^{-1}\left[\frac{3 a^{2} x-x^{3}}{a\left(a^{2}-3 x^{2}\right)}\right]$
6. a) Evaluate $\int \frac{2 x+4}{x\left(x^{2}+4\right)} d x$
b) Evaluate $\int_{0}^{\pi} \frac{\mathrm{xsin} \mathrm{x}}{1+\sin x} d x$
7. a) Form the differential equation corresponding to the family of circles of radius r given by $(x-a)^{2}+(y-b)^{2}=r^{2} \quad$ where a, b are parameters .
b) Solve $\sin ^{2} x \frac{d y}{d x}+y=\cot x$
