

www.FirstRanker.com

www.FirstRanker.com

Code No: R1621011	R16	SET - 1					
II B. Tech I Semester Supplementary Examinations, May - 2018 PROBABILITY AND STATISTICS							
Time: 3 hours	(Civil Engineering)	Marks: 70					
	Paper consists of two parts (Part-A and Part-B)	Warks. 70					
	ALL the question in Part-A any FOUR Questions from Part-B						
	<u>PART –A</u>						
1. a) Define a discrete random va		(2M)					
b) Define a distribution function	on for a continuous random variable.	(2M)					
c) Find the value of the finite p N = 1000.	population correction factor for $n = 10$ and	(2M)					
d) Define null and alternative l	hypothesis.	(3M)					
e) Define simple correlation and	nd write formula for simple correlation coefficient.	(3M)					
f) Write the expression for the	control line and three sigma for mean Chart	(2M)					
PART -B							
-	Four tosses of a coin. Denoting the outcomes HHTH, at all 16 outcomes are equally likely, find the the total number of heads.	(7M)					
b) Define the geometric distrib	oution and find its mean and variance.	(7M)					
3. a) Let X be a continuous rando $f(x) = \begin{cases} k x^2 & \text{if } 0 \\ 0 & \text{else} \end{cases}$		(7M)					
(i) Evaluate k (ii) Find $p(1)$	$1/4 \le X \le 3/4$). (iii) Find $p(X > 2/3)$.						
b) Define the Gamma Distribu	tion and find its mean and variance.	(7M)					
3, three each with -2 and 2, the same probability of bein	abel five each with -4 and 4, four each with -3 and and two each with $-1,0$ and 1. If each slip of paper has a drawn, find the probability of getting 4 and find the mean and the variance of this	(7M) s					
b) Find the value of $F_{0.95}$ for ν	$v_1 = 12$ and $v_2 = 15$ degrees of freedom.	(7M)					
is at least 28,000 miles. To trucks and gets a mean life	us of the claim that the average lifetime of certain tires o check the claim, the firm puts 40 of these tires on its time of 27, 463 miles with a standard deviation of 1 clude if the probability of a Type I error is to be at mos	s ,					
• \	way classification of analysis of variance.	(7M)					

www.FirstRanker.com

Code No: R1621011

(R16)

(7M)

6. a) The following are the measurements of the air velocity and evaporation coefficient (7M) of burning fuel droplets in an impulse engine:

Air velocity(cm/s) x	20	60	100	140	180	220	260	300	340	380
Evaporation coefficient (mm ² /s) y	0.18	0.37	0.35	0.78	.056	.075	1.18	1.36	1.17	1.65

Fit a straight line to these data by the method of least squares and use it to estimate the evaporation coefficient of a droplet when the air velocity is 190 cm/s.

b) Find the Correlation Coefficient for the following data:

Х	1	2	3	4	5
У	2	5	3	8	7

7. Consider the following data taken on subgroups of size 5. The data contain 20 (14M) averages and ranges on the diameter (in millimeters) of an important component part of an engine. Display \overline{X} and R Charts. Does the process appear to be in control?

Sample	\overline{X}	R	Sample	\overline{X}	R
1	2.3972	0.0052	.11	2.3887	0.0082
2	2.4191	0.0117	12	2.4107	0.0032
3	2.4215	0.0062	13	2.4009	0.0077
4	2.3917	0.0089	14	2.3992	0.0107
5	2.4151	0.0095	15	2.3889	0.0025
6	2.4027	0.0101	16	2.4107	0.0138
7	2.3921	0.0091	17	2.4109	0.0037
8	2.4171	0.0059	18	2.3944	0.0052
9	2.3951	0.0068	19	2.3951	0.0038
10	2.4215	0.0048	20	2.4015	0.0017

2 of 2

Note :- Statistical tables and Control Chart Constants are required