

www.FirstRanker.com

www.FirstRanker.com

Code No: R1621041

SET - 1

II B. Tech I Semester Supplementary Examinations, May - 2018 **ELECTRONIC DEVICES AND CIRCUITS**

Time: 3 hours

(Com to ECE, EIE and ECC)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any FOUR Questions from Part-B

PART –A

1.	a)	Explain the terms mobility and conductivity of a Semiconductors in detail	(2M)	
	b)	Define Diffusion capacitance and Transition capacitance of a PN junction diode	(3M)	
	c)	What is the need for filters in power supplies	(2M)	
	d)	What are the different configurations of BJT	(2M)	
	e)	Define biasing and explain the Need for biasing	(2M)	
	f)	Explain the Generalized analysis of small signal model in detail	(3M)	
PART -B				
2.	a)	Define Hall effect and Derive Hall coefficient expression along with applications of Hall effect	(7M)	
	b)	In a P-type semiconductor the resistivity of the bar is $220X10^{3}\Omega$, width is 2mm, Magnetic flux is 0.1 wb/m ² , I=5µ amps, V _H =28m volts Find the Hole mobility of a Semiconductor Bar.	(7M)	
3.	a)	The reverse saturation current I_o in a germanium diode is 6μ A. Calculate the current flowing through the diode when the applied forward biase voltages are 0.2,0.3 and 0.4 V at room temperature.	(10M)	
	b)	Describe the principal of operation of an LCD	(4M)	
4.	a)	A 230V, 50 z voltage is applied to the primary of 5:1 step down center-tap transformer used in a full-wave rectifier having a load of 900 Ω . If the diode resistance and secondary coil resistance together has a resistance 100 Ω , determine (i)DC voltage across the load (ii) DC current flowing through load (iii)DC owe delivered to the load (iv) PIV across diode (v) ripple voltage and its frequency.	(7M)	
	b)	Derive the expression for a ripple factor in a full-wave rectifier with resistive load in detail	(7M)	
5.	a)	Draw the circuit diagram of an NPN junction transistor CE configuration and describe the static input and output characteristics. Also, Define active, saturation and cutoff regions and saturation resistance of a CE transistor	(7M)	
	b)	Determine I_C , I_E and α for a transistor circuit having IB=15µA and β =150.	(7M)	

Code No: R1621041

www.FirstRanker.com

www.FirstRanker.com

- 6. a) A transistor amplifier $V_{cc}=12V$, $R_1=8K\Omega$, $R_2=4K\Omega$, $R_e=1K\Omega$ and (7M) $R_1=1.5K\Omega$. Assume $V_{be}=0.7V$ Determine the operating point and draw the DC and AC load line.
 - b) Explain the collector to base bias method along with circuit diagram and derive (7M) the stability factor for it
- 7. a) In the CE amplifier calculate the mid frequency voltage gain and lower 3-dB (7M) point. The transistor has h-parameters $h_{fe}=400$ and $h_{ie}=10k\Omega$, the circuit details are Rs=600 Ω , R_L=5K Ω , Re=1K Ω , Vcc=12V R1=15K Ω ,R2=2.2.K Ω and Ce=50 μ F.
 - b) Draw the circuit diagram of CB amplifier and explain its operation in detail (7M)

www.FirstRanker.com

2 of 2