www.FirstRanker.com

SET - 1

II B. Tech I Semester Supplementary Examinations, May - 2018 SWITCHING THEORY AND LOGIC DESIGN

(Com to ECE, EIE and ECC)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Subtract 27810 from 49510 using the excess- 3 subtractor.
b) Obtain complement and dual for the given expression $(\mathrm{AB}+\mathrm{BC}+\mathrm{AC})(\mathrm{EF})$
c) Design full adder using two half adders
d) Explain basic structure of PLA
e) Convert JK Flip Flop to T Flip Flop
f) Brief about Finite State Machine

PART - B

2. a) The message below has been coded in the Tbit Hamming code and transmitted through noisy channel. Decode the méssage assuming that at most a single error has occurred in each code word 1001001, 0111001, 1110110, and 0011011.
b) Generate Hamming code for a 4-bit Excess-3 message to detect and correct single bit errors.
3. a) Implement the following function using only NOR gates $F=a .(b+c . d)+(b . c)$.
b) Implement the following function using only NAND gates $G=(a+b) .(c . d+e)$
4. a) Design a full-adder with two half-adders and basic gates.
b) Convert Excess-3 code to BCD using Full adder circuits.
5. a) Implement $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,1,3,5,6,8,9,11,12,13)$ using PAL and explain its procedure.
b) Write the merits and demerits of PROM.
6. a) Draw the circuit diagram of J-K flip flop with NAND gates with positive edge triggering and explain its operation with the help of truth table. How race around condition is eliminated.
b) Realize D-latch using R-S latch. How it is different from D-flip flop. Draw the circuit using NAND gates and explain.

1 of 2
7. a) Convert the following Mealy machine into a corresponding Moore machine:

PS	NS,Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{C}, 0$	$\mathrm{~B}, 0$
B	$\mathrm{A}, 1$	$\mathrm{D}, 0$
C	$\mathrm{B}, 1$	$\mathrm{~A}, 1$
D	$\mathrm{D}, 1$	$\mathrm{C}, 0$

b) Design the circuit for the above table using RS flipflops.

