SET - 1

II B. Tech I Semester Supplementary Examinations, May - 2018
 NETWORK ANALYSIS
 (Com to ECE, EIE and ECC)

Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART - A

1. a) Explain the terms i) Resistivity and ii) Conductivity and give its units
b) Define the following terms w.r.t network Graph theory:
i)Connected graph ii) Tree iii) Links
c) Explain the term Quality factor of a circuit in resonance
d) State the Norton's Theorem
e) What are the conditions to be fulfilled for reciprocity of a two port network
f) Distinguish between Homogeneous and Non -Homogeneous equations

PART -B

2. a) Explain the principle of Duality with an example
b) Using node analysis, find I for the circuit diagram shown below:

3. a) Prove that in a pure inductive circuit the active power supplied over a complete cycle averages out to Zero.
b) A certain inductive coil takes 15 A when the supply voltage is $230 \mathrm{~V}, 50 \mathrm{~Hz}$. If the frequency is changed to 40 Hz , the current increases to 17.2 A . Calculate the resistance and the inductance of the coil.
4. a) Derive the equation for Equivalent inductance, when two inductors are coupled in series opposing and mutual inductance exists between them
b) A coil of resistance 50Ω and inductance 9 H is connected in series with a capacitor and is supplied at constant voltage and variable frequency source. If the maximum current is 1 A at 75 Hz determine the frequencies when the current is 0.5 A .
5. Use Thevenin's theorem to find the current I that will flow through the switch S in the circuit shown in figure, when S is closed. Specify the direction as well as the magnitude of I

6. a) Explain the interrelationships between Z-parameters in terms of ABCD parameters for a two port network
b) For the network shown, determine Y_{11} and Y_{21} with 3Ω load across port 2 .

7. a) Derive the step response of RL circuit in s-domain
b) The network shown in figure, is initially under steady state condition. The switch is opened at $t=0$. Find the voltage across inductance as a function of t.

