

www.FirstRanker.com

www.FirstRanker.com

Co	de N	o: R1621045	SET - 1
		II B. Tech I Semester Supplementary Examinations, May - 2018 RANDOM VARIABLES & STOCHASTIC PROCESSES	
Tir	ne. 3	(Electronics and Communication Engineering) hours Max.	Marks: 70
1 11	ne. 2	Note: 1. Question Paper consists of two parts (Part-A and Part-B)	With KS. 70
		 Answer ALL the question in Part-A Answer any FOUR Questions from Part-B 	
		<u>PART –A</u>	
1.	a)	In a single throw of three dice, find the probability of getting the same number on three dice.	(2M)
	b)	Define moment generating function of a random variable X.	(2M)
	c)	X and Y are two independent random variables with $E[X] = 4$, $E[Y] = 6$. Find $E[4X-2Y]$	(2M)
	d)	When a random process is called SSS process? Explain	(3M)
	e)	Determine whether the power density spectrum shown below is valid or not? ω^2	(3M)
		$\frac{\omega}{\omega^{6}+3\omega^{2}+3}$	
	f)	Define effective noise temperature. PART -B	(2M)
2	``		
2.	a)	Define a discrete random variable and discuss the characteristics of Poisson random variable using its probability density and distribution functions.	
	b)	Define probability distribution function and write its properties.	(4M)
	c)	A random variable X has pdf shown below. i) Find the value of k. ii) Find P(1/4 $< X < \frac{1}{2}$). $f_X(x) = \begin{cases} kx & 0 < x < 1 \\ 0 & elsewhere \end{cases}$	(5M)
3.	a)	A random variable X has a probability density	(7M)
	,	$f_X(x) = \begin{cases} (\pi/16)\cos(\pi x/8) & -4 \le x \le 4\\ 0 & elsewhere \end{cases}$	
	b)	Find its variance. A random variable X has pdf $f_X(x) = (1/b)e^{-(x-a)/b}$. Find its characteristic function.	(7M)
4.	a)	Find the marginal densities of the joint density	(7M)
		$f_{xy}(x, y) = \begin{cases} b(x+y)^2 & -2 < x < 2 \text{ and } -3 < y < 3 \\ 0 & elsewhere \end{cases}$	
	b)	Two random variables X and Y have joint characteristic function $\phi_{XY}(\omega_1,\omega_2) = \exp(-2\omega_1^2 - 8\omega_2^2)$. Show that X and Y are zero mean uncorrelated random variables.	(7M)
		1 of 2	

www.FirstRanker.com

Code No: R1621045	R16	SET - 1

- 5. a) Write short notes on Gaussian random process. (7M)
 - b) Given the random process $X(t) = A\cos\omega_0 t + B\sin\omega_0 t$, where ω_0 is a constant (7M) and A, B are uncorrelated zero ,mean random variables with equal variances. Prove that X(t) is wide sense stationary.
- 6. Derive the relationship between cross correlation function and cross power (14M) spectrum.
- 7. a) Write in detail about resistive noise source. (8M)
 - b) Obtain the mean value of the response of a LTI system excited by random (6M) process X(t).

www.FirstRanker.com

2 of 2

 $|\cdots|\cdots||\cdots||\cdots||||$