

www.FirstRanker.com

www.FirstRanker.com

	II B. Tech I Semester Regular Examinations, March – 2014 AUTOMOTIVE ENGINES	l I
Tiı	(Automobile Engineering) ne: 3 hours	Max. Marks: 75
	Answer any FIVE Questions All Questions carry Equal Marks	
1.	a) Give classification of S.I. Engines by valve location.	
	b) Explain the thermodynamic cycle of a supercharged I.C. engine.	(7M+8M)
2.	a) Describe the scavenging diagram for a two-stroke cycle S.I. Engine.	
	b) Discuss any two theoretical scavenging processes.	(7M+8M)
3.	a) Discuss the basic functions of a cylinder head.	
	b) Explain the typical cylinder head layouts for Diesel engine.	(6M+9M)
4.	A simple jet carburetor has to supply 5 kg of air per minute. The air at a pro- and at a temperature of 27^{0} C. Calculate the throat diameter of the choke for a 90 m/s. Take velocity coefficient to be 0.8. Assume isentropic flow. Assu- compressible.	essure of 1.013 bar air flow velocity of me the flow to be (15M)
•	 A simple jet carburetor has to supply 5 kg of air per minute. The air at a pro and at a temperature of 27°C. Calculate the throat diameter of the choke for a 90 m/s. Take velocity coefficient to be 0.8. Assume isentropic flow. Assure compressible. a) What is the necessity for gasoline injection? Explain with suitable sketch. 	essure of 1.013 bar air flow velocity of me the flow to be (15M)
4. 5.	 A simple jet carburetor has to supply 5 kg of air per minute. The air at a pro and at a temperature of 27°C. Calculate the throat diameter of the choke for a 90 m/s. Take velocity coefficient to be 0.8. Assume isentropic flow. Assure compressible. a) What is the necessity for gasoline injection? Explain with suitable sketch. b) Mention the various types of gasoline injection systems. 	essure of 1.013 bar air flow velocity of me the flow to be (15M) (8M+7M)
4. 5.	 A simple jet carburetor has to supply 5 kg of air per minute. The air at a pro and at a temperature of 27°C. Calculate the throat diameter of the choke for a 90 m/s. Take velocity coefficient to be 0.8. Assume isentropic flow. Assurcempressible. a) What is the necessity for gasoline injection? Explain with suitable sketch. b) Mention the various types of gasoline injection systems. a) Explain the working of various nozzles with sketches. 	essure of 1.013 bar air flow velocity of me the flow to be (15M) (8M+7M)
4. 5.	 A simple jet carburetor has to supply 5 kg of air per minute. The air at a pro and at a temperature of 27°C. Calculate the throat diameter of the choke for a 90 m/s. Take velocity coefficient to be 0.8. Assume isentropic flow. Assurcempressible. a) What is the necessity for gasoline injection? Explain with suitable sketch. b) Mention the various types of gasoline injection systems. a) Explain the working of various nozzles with sketches. b) Explain the working of felt type oil filter with a neat sketch. 	essure of 1.013 bar air flow velocity of me the flow to be (15M) (8M+7M) (8M+7M)
4. 5. 5.	 A simple jet carburetor has to supply 5 kg of air per minute. The air at a property and at a temperature of 27°C. Calculate the throat diameter of the choke for a 90 m/s. Take velocity coefficient to be 0.8. Assume isentropic flow. Assume compressible. a) What is the necessity for gasoline injection? Explain with suitable sketch. b) Mention the various types of gasoline injection systems. a) Explain the working of various nozzles with sketches. b) Explain the working of felt type oil filter with a neat sketch. a) Explain the working principle of pneumatic governor with a neat sketch. 	essure of 1.013 bar air flow velocity of me the flow to be (15M) (8M+7M) (8M+7M)
4. 5. 5.	 A simple jet carburetor has to supply 5 kg of air per minute. The air at a proand at a temperature of 27°C. Calculate the throat diameter of the choke for a 90 m/s. Take velocity coefficient to be 0.8. Assume isentropic flow. Assurcempressible. a) What is the necessity for gasoline injection? Explain with suitable sketch. b) Mention the various types of gasoline injection systems. a) Explain the working of various nozzles with sketches. b) Explain the working of felt type oil filter with a neat sketch. a) Explain the working principle of pneumatic governor with a neat sketch. b) Explain the various phases of spray formation with sketches. 	essure of 1.013 bar air flow velocity of me the flow to be (15M) (8M+7M) (8M+7M) (8M+7M)

1 of 1

www.FirstRanker.com

www.FirstRanker.com

Co	ode No: R21242	(R10)		(SET - 2)	
	II B. Tech I So	emester Regular Ex AUTOMOTIVE	aminations, March – 2014 ENGINES		
Ti	me: 3 hours	(Automobile Eng	(incernig)	Max. Marks: 75	
		Answer any FIVE All Questions carry	Questions Equal Marks		
1.	a) What are the limits of turb Engine.	o-charging? Explain	how it effect the performanc	e of an I.C	
	b) What is supercharging? Ex	xplain the advantage	s and disadvantages of it.	(7M+8M)	
2.	What is the function of the for a) Power piston and the displ	bllowing in a Stirling acer piston assembly	; Engine? y.		
	b) Buffer space c) Swash	plate drive.		(5M+5M+5M)	
3.	a) Discuss the important func acting on it.	ctions of a connectin	g rod and also represent the v	arious forces	
	b) Discuss the materials used connecting rod.	for the construction	of camshaft, crankshaft, flyv	wheel and (7M+8M)	
4.	A single jet carburetor is specific gravity 0.75. The coefficient of 1.35 for air, the velocity coefficient for the jet is 0.8 times the pre 0.66.	s to supply 6 kg/m e air is initially at 1 , find: i) the diamet or venturi is 0.85. ii) ssure drop at the ver	inute of air and 0.4 kg/ min 1.013 bar and 27^{0} C. Assum er of the venturi if the air spe the diameter of the jet if the nturi and the discharge coeffic	nute of petrol of ing an isentropic eed is 90 m/s and pressure drop at cient for the jet is (15M)	
5.	a) Explain the advantages of	petrol injection syste	ems.		
	b) What are the various sense	ors used in electronic	: fuel injection system?	(7M+8M)	
6.	a) How are the injection s nowadays?	ystems classified?	Why the air injection sys	tem is not used	
	b) Explain the working of a f	ilter with Felt and Pa	aper elements with a neat ske	tch. (8M+7M)	
7.	a) Explain the working princ.b) Explain the working of mu	iple of mechanical g altihole nozzle with a	overnor with a neat sketch. a sketch.	(8M+7M)	
8.	a) Explain the air and water ofb) What is meant by crankcas	cooling systems with se ventilation? Expla 1 of 1	neat sketches. in with a sketch.	(8M+7M)	

www.FirstRanker.com

www.FirstRanker.com

	II B. Tech I Semester Regular Examinations, March – 2014 AUTOMOTIVE ENGINES (Automobile Engineering)				
ax. Marks: 7	(Automobile Eligneering) Ma	Time			
	Answer any FIVE Questions All Questions carry Equal Marks				
(8M+7M	urbo- charging? How is it achieved? a expression for the power required for an I.C. engine supercharger.	1. a b			
(8M+7M	he advantages & disadvantages of Stirling Engine. with sketches the working of Wankel combustion Engine.	2. a b			
e. (8M+7M	he arrangement of the basic valve system for an overhead valve engine various types of commonly used valve arrangements.	3. a b			
The pressur perature 27 ⁰ ity of petrol city, fuel flow (15M	gine has a carburetor of 32 mm venturi size. The jet diameter is 2 mm, t throat is 50 mm of Hg. The atmospheric pressure is 1 bar and temp ient of discharge for venturi is 0.85 and for fuel jet 0.66. The densit Nozzle lip is zero. Relative density of Hg is 13.6. Find the fuel veloc air flow and F/A, neglecting compressibility.	4. A d T 7 a			
(8M+7M	he merits and demerits of an Electronic fuel Injection system. the Multi Point Fuel Injection system with a neat sketch.	5. a b			
(7M+8M	the functional requirements of an injection system? eat sketch explain the jerk pump type injection system.	6. a b			
	he working of Pintle nozzle with a sketch. he purpose of using a governor in C.I. Engines? What are the two major	7. a b			

1 of 1

www.FirstRanker.com

www.FirstRanker.com

Code No: R21242	(R10)	(SET - 4)			
II B. Tech	I Semester Regular Examinations, March – 2 AUTOMOTIVE ENGINES (Automobile Engineering)	2014			
Time: 3 hours	(Max. Marks: 75			
	Answer any FIVE Questions				
	All Questions carry Equal Marks				
1. a) What modifications a	re necessary for a supercharged engine?				
b) Discuss the various ap	oplications of I.C. Engines.	(8M+7M)			
 a) Discuss the important salient points. 	a) Discuss the important designs of variable compression ratio engines & comment on their salient points.				
b) What is the difference	b) What is the difference between the valve timing of a crankcase-scavenged & supercharge				
two stroke Engine?		(8M+7M)			
3. a) Discuss the main princ	ciples of intake and exhaust manifold design of a	an Engine.			
b) What is a cylinder line	b) What is a cylinder liner? Discuss the advantages & disadvantages of a wet liner over a dry				
liner.		(8M+7M)			
4. A simple jet carburetor density of 740 kg/m ³ . Th	A simple jet carburetor is required to supply 6 kg of air per minute and 0.45 kg of fuel of density of 740 kg/m ³ . The air is initially at 1.013 bar and 27^{0} C. Calculate the throat diameter of				
the choke for a flow velo	ocity of 92 m/s. Take velocity coefficient as 0.8.	(15M)			
5 a) Explain port injection	and throttle body injection systems with neat sk	etches			
b) Describe D-MPFI and	L-MPFI injection systems.	(7M+8M)			
6 a) With a neat sketch ext	plain the working principle of distributor type fu	el injection pump			
b) Discuss the important	functions of nozzle.	(8M+7M)			
7. a) Explain the working o	f Pintaux nozzle with a sketch.				
b) Explain the working p	principle of pneumatic governor with a neat sketo	ch. (8M+7M)			
8. a) Explain the thermosyr	bhon cooling system with a sketch.				
b) Give the classification	of the lubricating oils and their functions.	(8M+7M)			

1 of 1