

www.FirstRanker.com

R10 SET - 1 II B. Tech I Semester Regular Examinations, March – 2014

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE AND ENGINEERING

Time: 3 hours

Code No: R21053

(Com. to CSE, IT, ECC)

Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

a) Prove that (∃x)P(x)∧Q(x) ⇒ (∃x)P(x)∧(∃x)Q(x). Does the converse hold?
 b) Obtain the principal conjunctive normal form of the formula

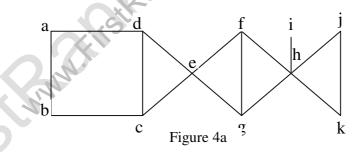
 $(\mathbb{P} \rightarrow \mathbb{R}) \land (\mathbb{Q} \rightleftharpoons \mathbb{P}).$

(8M+7M)

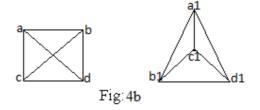
- a) If a=1820 and b=231, find GCD (a, b). Express GCD as a linear combination of a and b.
 b) Find 11⁷ mod 13 using modular arithmetic.
 - c) Use mathematical induction to prove that 5 divides n^2 -n whenever n is non-negative integer.

(5M+5M+5M)

- a) Let A be a given finite set and ρ(A) its power set. Let ⊆ be the inclusion relation on the elements of ρ(A). Draw Hasse diagrams of <ρ(A), ⊆> for A={a}; A={a,b}; A={a,b,c} and A={a,b,c,d}.
 - b) Let F_x be the set of all one-to-one onto mappings from X onto X, where X={1,2,3}. Find all the elements of F_x and find the inverse of each element. (8M+7M)
- 4. a) Apply BFS algorithm to find a spanning tree for the following graph in Figure 4a.



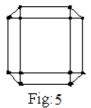
b) Determine whether the graphs in Figure 4b, are isomorphic. (8M+7M)



1 of 2

www.FirstRanker.com

5. a) Verify Euler's formula for Figure 5.



b) Draw the bipartite graph K_{3,3} and find its chromatic number.

(5M+10M)

6. a) If $\langle G, * \rangle$ is an abelian group, then for all $a, b \in G$ show that $(a*b)^n = a^n * b^n$

b) We are given the ring $\langle \{a,b,c,d\}, +, \rangle$	> whose operations are	given by the following table:

+	а	b	с	d	•	А	b	С	D
a	а	b	С	d	А	А	a	Α	А
b	b	с	D	а	В	а	c	Α	С
с	с	d	А	b	С	a	a	А	А
d	d	а	В	с	D	a	c	Α	А

Is it a commutative ring? Does it have an identity? What is the zero of this ring? Find the additive inverse of each of its elements. (5M+10M)

- 7. a) In how many ways five students can be selected from 12 students:
 - i) Without replacement.
 - ii) If two students not be included.
 - iii) A particular student to be included.
 - b) Find the sum of all 4-digit numbers that can be obtained by using digits 2, 3, 5 and 7 (without repetition). (8M+7M)
- 8. a) Solve the recurrence relation $u_{n+3} + 5u_{n+2} 18u_n = 0$. Given that

$$u_0 = 4, u_1 = -\frac{1}{6}, u_2 = 4$$

b) Solve the recurrence relation $u_n = u_{n-1} + \frac{n(n+1)}{2}, n \ge 1.$ (8M+7M)

www.FirstRanker.com

Code No: R21053	R10	(SET - 2)
	I Semester Regular Examinations, Mar NDATIONS OF COMPUTER SCIENC	
Time: 3 hours	(Com. to CSE, IT, ECC)	Max. Marks: 75
	Answer any FIVE Questions All Questions carry Equal Marks	
)) the conclusion $(x)(F(x) \rightarrow \exists S(x))$ follow all disjunctive and conjunctive normal	
 2. a) Find the integers x suci i) 5x≡4 (mod 3) b) Determine GCD (1970) 	th that ii) $7x\equiv 6 \pmod{5}$ iii) $9x\equiv 8 \pmod{7}$ 0, 1066) using Euclidean algorithm.	(8M+7M)
b) Given the relation mat	are bijections, prove that gof: $A \rightarrow C$ is a bintrices M_R and M_S , find M_{RoS} , $M_{\tilde{R}}$, $M_{\tilde{S}}$, $M_{R\tilde{C}}$	
$M_{R} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} M_{S}$	$= \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$	(7M+8M)
4. a) Find the depth first sea	arch spanning tree for the following graph	in Figure 1.
b) Prove that in a graph ((10M+5M)
	d e c Figure 1 g	j

1 of 2

- 5. a) Prove that a Star graph S_5 is isomorphic to bipartite graph $K_{1,4}$. Also Draw the graphs S_5 and $K_{1,4}$.
 - b) Prove whether K_4 and K_5 are planar or non-planar. (7M+8M)
- 6. a) Find all the subgroups of S_4 generated by the permutation

 $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} and \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$

- b) Let A=(6,12,18,24,36,72), a≤b if and only if a divides b. Draw Hasse diagram for it and prove that it is a lattice, but not a distributive lattice. (7M+8M)
- 7. a) How many six character passwords in a computer are possible, if the first two characters are the letters and the others are digits?
 - b) Define Multinomial theorem. Find number of integers <250 and divisible by 3 or 5 or 11.

(7M+8M)

8. a) Find the generating function of the sequence $0, 1, 2^2, 3^2, 4^2, ...$ b) Solve the recurrence relation $u_n + 5u_{n-1} + 6u_{n-2} = 3n^2 - 2n + 1$. (7M+8M)

www.FirstRanker.com

Code No: R21053

SET - 3

II B. Tech I Semester Regular Examinations, March – 2014 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE AND ENGINEERING

Time: 3 hours

(Com. to CSE, IT, ECC)

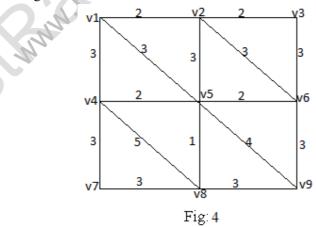
Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Using normal forms, show that the formula $Q \lor (P \land Q) \lor (P \land Q)$ is a tautology. b) Show that (x) $(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x)$ (5M+10M)
- 2. a) Let $a, b \in \mathbb{Z}$ so that 2a+3b is a multiple of 17. Prove that 17 divides 9a+5b.
 - b) Use Euler's theorem to find a number a between 0 and 9 such that a is congruent to 7^{1000} modulo 10.
 - c) If n is a positive integer, using mathematical induction prove that

$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n (n+1) = \frac{n(n+1)(n+2)}{3}$$
(5M+5M+5M)

- 3. a) If A={1,2,3,4} and P={{1,2},{3},{4}} is a partition of A, find the equivalence relation determined by P.
 - b) Let X={1,2,3} and f, g, h and s be functions from X to X given by f={<1,2>, <2,3>, <3,1>} g={<1,2>, <2,1>, <3,3>} h={<1,1>, <2,2>, <3,1>} and s={<1,1>, <2,2>, <3,3>}. Find fog, fohog, gos, fos.
 - c) Let X={1,2,3,4} and R={<1,1>, <1,4>, <4,1>, <4,4>, <2,2>, <2,3>, <3,2>, <3,3>}. Write the matrix of R and sketch its graph. (5M+5M+5M)
- 4. a) Apply Krushal's algorithm to determine a minimal spanning tree for the weighted graph given below in Figure 4.

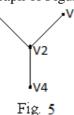


b) Consider a full binary tree of n vertices and k levels. Give the formulae for total number of vertices, total number of edges, total number of leaves and total number of internal vertices.
 Draw a full binary tree of level 3 and verify the above formulae. (7M+8M)

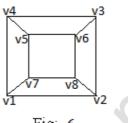
V1.

www.FirstRanker.com

5. a) Find the Chromatic polynomial of the graph of Figure 5.



- b) Show that the maximum number of edges in a complete bipartite graph with n vertices is $n^2/4$.
- c) Find the Hamiltonian circuit for Figure 6.

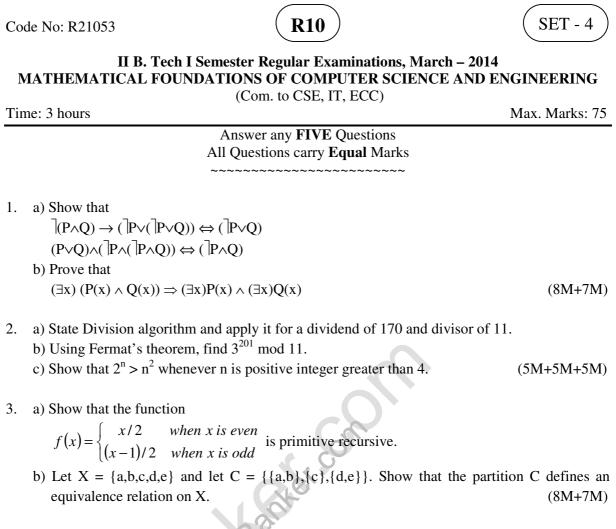


(5M+5M+5M)

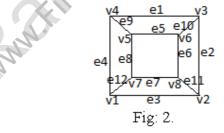
- 6. a) Show that in a group $\langle G, * \rangle$, if for any $a,b \in G$, $(a*b)^2 = a^2 * b^2$, then $\langle G, * \rangle$ must be abelian.
 - b) Prove that (S≤) is a lattice, where S= (1, 2, 3, 6) and ≤ is for divisibility. Prove that this is a distributive lattice.
 (7M+8M)
- 7. a) In how many different orders can three men and three women be seated in a row of six seats if:
 - i) Any one may sit in any one of the seats.
 - ii) The first and last must be filled by men.
 - iii) Men and women are seated alternate.
 - iv) All members of same sex be seated in adjacent seats.
 - b) Find the number of integers < 500 and divisible by 9 or 11 or 13. (8M+7M)
- 8. a) Solve the recurrence relation $a_n = a_{n-1} + a_{n-2} =$ where $n \ge 2$, $a_0 = 1$, $a_1 = 1$ using generating function.
 - b) Determine the sequence generated by $\frac{1}{1-x} + 3x^7 11$. (10M+5M)

2 of 2

www.FirstRanker.com



4. a) Write the Adjacency matrix and Incidence matrix for the graph in Figure 2. List the Advantages of Adjacency matrix.



b) Draw a complete binary tree with 19 vertices. For a complete binary tree of n vertices, give the formulae for number of leaves and internal vertices. Verify these formulae with the above tree.

Code No: R21053

R10

SET - 4

- 5. a) Draw eight regular graphs with six vertices. How many of them are connected.
 - b) Define a planar graph. Does the graph in Figure 3 satisfy all the properties of planar graph? If so, draw the planar graph for it. (8M+7M)

6. a) Show that the groups $\langle G, * \rangle$ and $\langle S, \Delta \rangle$ given by the following table are isomorphic.

*	p1	p2	p3	p4	Δ	q1	q2	q3	q4
p1	p1	p2	p3	p4	q1	q3	q4	q1	q2
p2	p2	p1	p4	p3	q2	q4	q3	q2	q1
p3	p3	p4	p1	p2	q3	q1	q2	q3	q4
p4	p4	p3	p2	p1	q4	q2	q1	q4	q3

b) Prove that the addition modulo 5 is a group.

(8M+7M)

- 7. a) Define Binomial theorem. Find the coefficient of x^5y^7 in the expansion of $(x+3y)^{12}$.
 - b) Find the number of distinct triples (x_1, x_2, x_3) of non-negative integers satisfying $x_1+x_2+x_3<15$. (7M+8M)
- 8. a) Solve the recurrence relation $u_n=3u_{n-1}$, $n\geq 1$ using generating function.
 - b) Solve the recurrence relation using the generating function.

 $a_n - 7a_{n-1} + 10a_{n-2} = 0, n \ge 2, a_0 = 10, a_1 = 41.$ (5M+10M)