www.FirstRanker.com

Code No: R21054

R10

SET - 1

II B. Tech I Semester Regular Examinations, March - 2014 DIGITAL LOGIC DESIGN

(Com. to CSE, IT)

Time: 3 hours Max. Marks: 75

> Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Covert the following decimal numbers to binary, octal and hexadecimal numbers
 - i) 196
- ii) 207.05
- b) Perform the following subtraction using 2's complement
 - i) 19 37
- ii) 79 19
- c) Find out the BCD, excess -3 and Grey code for the decimal numbers 0 to 9. (5M+5M+5M)
- 2. a) Find the complements of the following expressions
 - i) $(x\overline{y} + x\overline{z})(yz + y\overline{z})(xyz)$ ii) $x + \overline{y}z(x + y + \overline{z})$
 - b) State and explain DeMorgan's theorems. Draw the logic equivalent circuits representing the theorems using basic gates.
 - c) Determine the canonical sum-of-products representation of the following functions

 - i) $f(a,b,c) = a + (\overline{c} + b)(c + \overline{b})$ ii) $f(a,b,c) = c + (\overline{c} + \overline{b} + \overline{c}a)$
- (5M+5M+5M)

3. a) Simplify the Boolean expression using K-map

$$F(A, B, C, D) = \overline{A} + C + AB + A\overline{B}\overline{D} + AB\overline{D}$$

- b) Reduce the expression $f(x, y, z, w) = \pi (0.2, 7.8, 9.10, 11.15) + d(3.4)$ using K-map (7M+8M)
- 4. a) Realize a full-adder using i) only NAND gates and ii) only NOR gates
 - b) With the help of a logic diagram explain a parallel adder/subtractor using 1's complement (7M+8M)systems.
- a) Design an 8:1 multiplexer using NAND gates only
 - b) Design the following code converters i) Binary to Excess-3 ii) Grey to Binary

(7M + 8M)

- 6. a) Explain the need and advantages of using programmable logic devices in digital system
 - b) Design a BCD to 7 segment decodes for common cathode display using a suitable PLA.

(7M + 8M)

- 7. a) Draw the schematic circuit of a clocked J-K Flip-Flop with active low preset and active low clear using NAND gates and explain its operation with the help of a truth table.
 - b) Distinguish between combinational and sequential logic circuits.

(8M+7M)

- 8. a) Design a 4 bit binary synchronous counter with D Flip-Flops.
 - b) Design a 5 bit self-correcting ring counter

(7M + 8M)

1 of 1

www.FirstRanker.com

Code No: R21054

R10

SET - 2

II B. Tech I Semester Regular Examinations, March – 2014 DIGITAL LOGIC DESIGN

(Com. to CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Convert the following hexadecimal numbers to decimal binary, octal numbers
 - i) $(357)_{16}$
- ii) $(3AF.21)_{16}$
- b) Perform the following subtraction using 1's complements
 - i) 28 78
- ii) 96 22
- c) Generate a 4 bit Gray code directly using the mirror image property.

(5M+5M+5M)

- 2. a) Simplify the following logic expressions using Boolean theorems.
 - i) $(x+y+z)(x+\overline{y}+\overline{z})(x+y+\overline{z})(x+\overline{y}+z)$
 - ii) $xyz + \overline{x}yz + x\overline{y}z + xy\overline{z} + x\overline{y} \ \overline{z} + \overline{x}y\overline{z} + \overline{x} \ \overline{y} \ \overline{z}$.
 - b) Explain the terms
 - i) Prime implicant
- ii) minterm and
- iii) maxterm
- c) Realize 2-input Ex-OR and Ex-NOR gates using

(5M+5M+5M)

- i) NAND gates and
- ii) NOR gates only
- 3. a) Reduce the expression $f(x, y, z, w) = \sum (1,4,6,12,13,14) + d(2,5)$ using K-map.
 - b) Simplify the Boolean expression using k-map $f(x, y, z, w) = (x + y)(x + \overline{y} + z)(x + \overline{z})$.

(7M+8M)

- 4. a) Realize a full sub tractor using i) only NAND gate and ii) only NOR gates.
 - b) With the help of a basic diagram explain a parallel adder / sub tractor using 2's complement system.

(7M+8M)

- 5. a) Design the following combinational logic circuits using a multiplexes
 - i) Half adder
- ii) Full adder
- b) How does a priority encodes differ from an ordinary encodes explain with truth table and logic diagrams? (8M+7M)
- 6. a) Describe the differences between PLA and PAL.
 - b) Derive PLA and PAL programming tables for a combinational circuit that squarer a 3 bit number. (7M+8M)
- 7. a) Explain the basic Flip-Flop circuit for R-S using i) NAND gates ii) NOR gates
 - b) Explain how a T Flip-Flop is conversed in D Flip-Flop and J-K Flip-Flop. (8M+7M)
- 8. a) Design and implement a Mod 6 synchronous counter using J-K Flip –Flop.
 - b) Draw the logic diagram of a 4 bit shift resister. Explain how shift-left and shift-right operations are performed. (7M+8M)

www.FirstRanker.com

Code No: R21054

R10

SET - 3

II B. Tech I Semester Regular Examinations, March – 2014 DIGITAL LOGIC DESIGN

(Com. to CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Convert the following octal numbers to binary, decimal and hexadecimal numbers.
 - i) $(175)_8$
- ii) (326.04)₈
- b) Perform the following subtraction using 2'r complement.
 - i) 38 21
- ii) 19 92
- c) Explain even and odd parity codes.

(5M+5M+5M)

- 2. a) Expend $A(\overline{A} + B) (\overline{A} + B \overline{C})$ to max terms and min terms
 - b) Simplify the following expressions.
 - i) AB + ABC + A(B + AB)
- ii) $A + \overline{AB} + \overline{ABC} + \overline{ABCD}$.
- c) Implement the Boolean function F (A, B, C, D) = $\overline{AB} + \overline{CD} + \overline{BC}$ using the following two level gates (5M+5M+5M)
 - i) NAND AND
- ii) NOR OR.
- 3. a) Reduce the expression $f(x, y, z, w) = \sum_{x \in S} (0, 1, 4, 5, 6, 7, 9, 11, 14) + d(10, 15)$ using K map.
 - b) Reduce the Boolean expression using K-map

(7M+8M)

$$f(x, y, z, w) = x y z + y + y w + x, y, w + x z.$$

- 4. a) Realize a half subtractor using i) only NOR gates and ii) only NAND gates.
 - b) Explain a look ahead carry adder in detail.

(8M+7M)

(7M+8M)

- 5. a) Implement the following expression using a single 8:1 multiplexer $F(x, y, z, y) = \sum_{i=1}^{n} (0.12.5, 7.8, 0.14.15)$
 - $F(x, y, z, w) = \sum_{i=0}^{\infty} (0, 1, 2, 5, 7, 8, 9, 14, 15).$
 - b) Draw the basic diagram of a 2 to 4 decodes with an ENABLE input using

- i) NAND gates
- ii) NOR gates.
- 6. a) Give the comparison between PROM, PLA and PAL.
 - b) Design a combinational circuit that accepts a 3 bit number and generates an output binary number equal to the require of the input number using a ROM. (7M+8M)
- 7. a) Draw a neat circuit diagram of locked J K flip flop using NAND gates and give its truth table.
 - b) Give the Excitation table for T flip- flop, SR flip-flop and J-K flip- flop.

(7M+8M)

- 8. a) Design a 4 bit binary up / down ripple counter.
 - b) Draw a neat circuit diagram of a 4 bit Johnson converter and draw the relevant output wave forms. (7M+8M)

1 of 1

www.FirstRanker.com

Code No: R21054

R10

SET - 4

II B. Tech I Semester Regular Examinations, March – 2014 DIGITAL LOGIC DESIGN

(Com. to CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Convert the following binary numbers to decimal, octal number and Grey code.
 - i) 110101101
- ii) 10010001.
- b) Perform the flowing subtraction using 1's complement.
 - i) 33 08
- ii) 28 71
- c) What is BCD code? What are the rules for BCD additions?

(5M+5M+5M)

- 2. a) Show that both NAND gate and NOR gate are universal gates.
 - b) Explained x + y z + xy w + xyzw to min.terms and max.terms.
 - c) Simplify the following logic expressions using Boolean theorems. (5M+5M+5M)
 - i) $AB + \overline{AC} + A\overline{BC} CAB + C$
- ii) $\overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + AB\overline{C}$.
- 3. a) Reduce the expression $f(x, y, z, w) = \sum_{x \in S} (3, 5, 6, 7, 11, 13, 14, 15) + d (9, 10, 12)$.
 - b) Reduce the following expression using K-map.

(8M+7M)

$$f(x, y, z, w) = x(y + \overline{z})(x + \overline{y})(y + z + \overline{w}).$$

- 4. a) Realize a half –adder using i) only NAND gates ii) only NOR gates.
 - b) Give the implementation of a 4 bit ripple adder using full adders.

(8M+7M)

- 5. a) Design a 16:1 MUX using i) 3:1 MUX and or gate ii) 8:1 and 2:1 MUX.
 - b) Implement the following function using 3 to 8 line decorous

(7M+8M)

i)
$$f(x, y, z) = \sum (0, 1, 5, 6)$$

ii)
$$f(x, y, z) = \sum_{z=0}^{\infty} (0, 2, 3, 4, 6)$$

- 6. a) Explain how to use PAL having only five product terms to realize a function having six product terms.
 - b) Design a 3 bit Binary to Grey code converse using a suitable PLA.

(8M+7M)

- 7. a) What is race around condition? How does it set eliminated is a Master- slave J-K flip-flop.
 - b) Convert a D flip flop into SR flip-flop and T flip flop.

(8M+7M)

- 8. a) Design and implement a MOD-7 synchronous counter using T flip-flops.
 - b) Design a 4 bit universal shift resister and draw the circuit with the given mode of operation table. (7M+8M)

S_1	S_0	Operation
0	0	Shift left
0	1	Shift right
1	0	Parallel
1	1	Inhibit clock

1 of 1