II B. Tech I Semester Regular Examinations, March - 2014 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Electronics and Communications Engineering)
Time: 3 hours

Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Give the definition and Axioms of probability.
b) Using Venn diagrams prove the Demorgan's laws:
i) $(\overline{A \bigcup B})=\bar{A} \bigcap \bar{B}$
ii) $(\bar{A} \cap \bar{B})=\bar{A} \bigcap \bar{B})$
(7M+8M)
2. a) If the function $G_{x}(x)=K \sum_{n=1}^{N} n^{3} u(x-n)$ to be a valid distribution function, find the value of ' K '.
b) State and prove any four properties of probability density function.
($7 \mathrm{M}+8 \mathrm{M}$)
3. a) Find the skew for Gaussian distributed random variable.
b) Explain about the monotonic transformations for a continuous random variable. $\quad(7 \mathrm{M}+8 \mathrm{M})$
4. a) State and prove central limit theorem for equal distributions.
b) The joint density function of random variables X and Y is
$\mathrm{f}_{\mathrm{xy}}(\mathrm{x}, \mathrm{y})=\frac{1}{a} e^{-|x|-|y|},-\infty<x<\infty,-\infty<y<\infty$.
i) Are X and Y statistically independent variables.
ii) Calculate the probability of $\mathrm{x} \leq 1$ and $\mathrm{y} \leq 0$.
5. a) Three random variables X_{1}, X_{2}, and X_{3} represent samples of random noise voltage taken at three times. Their covariance matrix is defined by

$$
\left[C_{x}\right]=\left[\begin{array}{lll}
3.0 & 1.8 & 1.1 \\
1.8 & 3.0 & 1.8 \\
1.1 & 1.8 & 3.0
\end{array}\right]
$$

The transformation matrix

$$
[T]=\left[\begin{array}{ccc}
4 & -1 & -2 \\
2 & 2 & 1 \\
-3 & -1 & 3
\end{array}\right]
$$

Convert the variable to new random variables $\mathrm{Y}_{1}, \mathrm{Y}_{2}$ and Y_{3}. Find the covariance matrix of the new random variables.
b) State and prove any two properties of joint characteristic function.
6. a) Consider a random process $\mathrm{X}(\mathrm{t})=\cos (\omega t+\theta)$ where ω is a real constant and θ is a uniform random variable in $\left(0, \frac{\pi}{2}\right)$. Find the average power in the process.
b) Derive the condition for a random process to be mean Ergodic.
7. a) State and prove any three properties of Cross correlation function.
b) Derive the relation between Auto Correlation Function and PSD.
8. a) Derive the relation between PSD of input \& Cross PSD of input and output.
b) A WSS process $\mathrm{X}(\mathrm{t})$ has $\mathrm{R}_{\mathrm{xx}}(\tau)=\mathrm{Ae}^{-\mathrm{a} \mid \tau \text { ' }}$ where A and 'a' are real constants is applied to input of LTI system with $h(t)=e^{-b t} u(t)$, where ' b ' is a real positive constant. Find the PSD of the output of system.

II B. Tech I Semester Regular Examinations, March - 2014 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Electronics and Communications Engineering)
Time: 3 hours

Answer any FIVE Questions
All Questions carry Equal Marks

1. a) State the following and explain
i) Baye's Theorem
ii) Conditional probability.
b) What is the probability of picking an ace and a king from a 52 card deck?
2. a) For a real constant $b>0, c>0$ and any ' a ' find the condition on constant ' a ' such that

$$
f_{X}(x)=\left\{\begin{array}{cc}
{\left[1-\frac{x}{b}\right],} & 0 \leq x \leq c \\
0 & \text { elsewhere }
\end{array} \quad\right. \text { is a valid pdf. }
$$

b) State and explain the properties of conditional density function.
3. a) Find the mean and variance of ' $X+a$ ', in terms of mean and variance of ' X '.
b) Derive the relation between moment generating function and moments.
(7M+8M)
4. a) Let X and Y are two independent random variables with
$\mathrm{f}_{\mathrm{x}}(\mathrm{x})=\alpha e^{-\beta x} u(x)$ and
$\mathrm{f}_{\mathrm{y}}(\mathrm{y})=\beta e^{-\beta y} u(y)$
Find the density function of $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$ for
i) $\alpha \neq \beta$
ii) $\alpha=\beta$
b) Write the properties of Joint distribution.
5. Zero mean Gaussian random variables X_{1}, X_{2} and X_{3} having covariance matrix.
$\left[\mathrm{C}_{\mathrm{x}}\right]=\left[\begin{array}{ccc}4 & 2.05 & 1.05 \\ 2.05 & 4 & 2.05 \\ 1.05 & 2.05 & 4\end{array}\right]$
Are transformed to new random variable $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}$.
i) Find the covariance matrix of Y_{1}, Y_{2} and Y_{3}.
ii) Write expression for joint density function of $\mathrm{Y}_{1}, \mathrm{Y}_{2}$ and Y_{3}.
6. a) A random process $\mathrm{X}(\mathrm{t})=\mathrm{A} \operatorname{Cos}\left(\mathrm{w}_{\mathrm{c}} \mathrm{t}+\theta\right)$ where θ is a random variable uniformly distributed in the range $(0,2 \pi)$. Show that the process is ergodic in mean and correlation sense.
b) Define covariance function and explain its properties.
$(8 \mathrm{M}+7 \mathrm{M})$
7. a) If the Auto Correlation Function of a WSS process is $\mathrm{R}(\tau)=\mathrm{Ke}^{-\mathrm{kl}} \tau$ । Find its PSD.
b) Check whether the following functions are valid PSDS or not.
$(8 \mathrm{M}+7 \mathrm{M})$
i) $\frac{w^{2}}{w^{6}+3 w^{2}+3}$
ii) $\frac{w^{2}}{w^{2}+16}$
8. a) Compute the overall Noise figure of a four stage cascaded system with following data:
$\mathrm{F}_{1}=10, \mathrm{~F}_{2}=5, \mathrm{~F}_{3}=8, \mathrm{~F}_{4}=12$
$\mathrm{ga}_{1}=50, \mathrm{ga}_{2}=20$ and $\mathrm{ga}_{3}=10$.
b) State and prove any three properties of Narrow band Noise processes.

II B. Tech I Semester Regular Examinations, March - 2014 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Electronics and Communications Engineering)
Time: 3 hours

1. a) Using Venn diagram and proof, prove that $\mathrm{P}(\mathrm{A} \cup \mathrm{B} / \mathrm{C})=\mathrm{P}(\mathrm{A} / \mathrm{C})+\mathrm{P}(\mathrm{B} / \mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{B} / \mathrm{C})$.
b) Define probability in terms of relative frequency.
c) Explain independent events.
$(7 \mathrm{M}+3 \mathrm{M}+5 \mathrm{M})$
2. a) A random variable X is Gaussian with mean $\mathrm{m}_{\mathrm{x}}=0$ and $\sigma_{x}=1$.
i) What is the probability that $|X|>2$. ii) What is the probability that $X>2$.
b) Draw the pdf of Rayleigh density function by giving its expression and find the value and X where it is maximum.
3. a) Let X be a random variable which can take values $1,2,3$ with probabilities $\frac{1}{3}, \frac{1}{6}$ and $\frac{1}{2}$ respectively. Find the $3^{\text {rd }}$ moment about the mean.
b) If X is the number scored in a throw of a fair die, show that Chebyshev's inequality gives $\mathrm{P}\{|\mathrm{x}-\mathrm{m}|>2.5\}<0.4$, where ' m ' is mean of X , while actual probability is zero.
4. a) The joint density function of three random variables X, Y and Z is

$$
\begin{aligned}
\mathrm{f}_{\mathrm{xyz}}(\mathrm{x}, \mathrm{y}, \mathrm{z}) & =24 \mathrm{xy}^{2} z^{3}, & & 0<\mathrm{x}<1,0<\mathrm{y}<1,0<\mathrm{z}<1 \\
& =0, & & \text { otherwise. }
\end{aligned}
$$

i) Find the maginal densities $f_{x}(x), f_{y}(y)$ and $f_{z}(z)$.
ii) Find $\mathrm{P}(\mathrm{X}>1 / 2, \mathrm{y}<2, \mathrm{z}>1 / 2)$
b) State and prove any four properties of joint density function.
($8 \mathrm{M}+7 \mathrm{M})$
5. For the joint characteristic function

$$
\mathrm{Q}_{\mathrm{xy}}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=\exp \left[-\frac{1}{2}\left[\sigma_{x}^{2} w_{1}^{2}+2 \rho \sigma_{x} \sigma_{y} w_{1} w_{2}+\sigma_{y}^{2} w_{2}^{2}\right]\right]
$$

Find the Marginal characteristic functions of X and Y .
6. a) Consider a random process $\mathrm{X}(\mathrm{t})=10 \cos (100 \mathrm{t}+\varphi)$ where φ is uniformly distributed random variable in the internal $(-\pi, \pi)$. Show that the process is correlation ergodic.
b) State and prove any four properties of Auto Correlation Function.
7. a) Derive the relation between PSD of $\mathrm{x}(\mathrm{t})$ and PSD of $\frac{d x(t)}{d t}$.
b) For a random process $\mathrm{X}(\mathrm{t})=\mathrm{A} \cos (\mathrm{wt}+\theta)+\mathrm{B}$ sinwt where A and B are two uncorrelated random variables with zero mean and equal variances and w is a real constant. Find the ACF of $\mathrm{X}(\mathrm{t})$ and hence its PSD.
8. a) Derive the relation between input and output ACF of an LTI system with impulse response $h(t)$.
b) An amplifier with $g_{a}=40 \mathrm{~dB}$ and $\mathrm{B}_{\mathrm{N}}=20 \mathrm{kHz}$ is found to have $\mathrm{T}_{0}=10^{0} \mathrm{~K}$. Find T_{e} and Noise figure.
($8 \mathrm{M}+7 \mathrm{M}$)

II B. Tech I Semester Regular Examinations, March - 2014 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Electronics and Communications Engineering)
Time: 3 hours
All Questions carry Equal Marks

1. a) State and prove Baye's Theorem.
b) If A and B are two mutually exclusive events show that
i) $\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{A})}{1-\mathrm{P}(\mathrm{B})}$
ii) $\mathrm{P}(\mathrm{A} / \mathrm{AUB})=\frac{P(A)}{P(A)+P(B)} i f P(A U B) \neq 0$
(7M+8M)
2. a) Find the constant ' b ' such that
$\mathrm{f}_{\mathrm{x}}(\mathrm{x})=\left\{\begin{array}{cc}\frac{e^{3 x},}{4} & 0 \leq x \leq b \\ 0, & \text { elsewhere }\end{array}\right.$ Is a valid density function.
b) State and prove any four properties of CDF
(7M+8M)
3. a) If X has density function
$f_{x}(x)=\exp (-x), x>0$

$$
=0, \quad x \leq 0
$$

Find the density function of $Y=X^{2}$
b) Find the mean of a Gaussian distribution.
4. a) State and prove the central limit theorem.
b) If X and Y are two Gaussian random variables with zero mean find the pdf of a new random variable $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$.
5. a) State and explain the properties of jointly Gaussian random variables.
b) Random variables X and Y has joint density.
$\mathrm{f}_{\mathrm{xy}}(\mathrm{x}, \mathrm{y})=\frac{8}{3} u(x-2) u(y-1) x y^{2} \exp (4-2 x y)$ undergo a transformation
$T=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ to generate new random variables Y_{1} and Y_{2}. Find joint density of Y_{1} and Y_{2}.
(7M+8M)
6. a) Consider a random process $\mathrm{X}(\mathrm{t})=\mathrm{A}$ coswt where ' w ' is a constant and A is uniformly distributed over $(0,1)$. Find the ACF and Auto covariance of $\mathrm{X}(\mathrm{t})$.
b) Explain mean Ergodic processes in brief.
7. a) The PSD of a random process is $S_{x x}(w)=\left\{\begin{array}{cc}\pi, & |w|<1 \\ 0, & \text { otherwise }\end{array}\right.$. Find its ACF.
b) State and prove any three properties of Power Spectral Density.
8. a) A random process $\mathrm{X}(\mathrm{t})$ has $\mathrm{ACF}_{\mathrm{xx}}(\tau)=\mathrm{A}^{2}+\mathrm{Be}^{-|\tau|}$
where A, B are positive constants. Find the mean value of the system having impulse response
$\mathrm{h}(\mathrm{t})=\left\{\begin{array}{cc}e^{-w t}, & t>0 \\ 0, & t<0\end{array}\right.$
b) Derive the equation for Noise figure of Cascaded system in terms of individual Noise figures
($8 \mathrm{M}+7 \mathrm{M}$)

