

www.FirstRanker.com

Code No: R21044

(R10)

SET - 1

II B. Tech I Semester Regular Examinations, March – 2014 SIGNALS AND SYSTEMS

(Com. to ECE, EIE, ECC, BME)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Explain about complex exponential function and show that the complex exponential functions are orthogonal functions.
 - b) Derive the relation between unit step function and signum function along with their appropriate definitions. (8M+7M)
- 2. a) A function x(t) is given by $x(t) = \begin{cases} e^{-t} & 0 \le t \le 1 \\ 0 & \text{else where} \end{cases}$ and the function is repeated every

T = 1 sec. With unit step function u(t), if $y(t) = \sum_{n=-\infty}^{\infty} a(t-n)u(t-n)$ then find the exponential Fourier series for y(t).

b) Explain about the Dirichlet's condition for Fourier series.

(8M+7M)

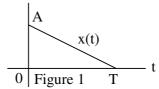
- 3. a) Find the Fourier Transform of a signal given by $10\sin^2(3t)$.
 - b) State and prove the following properties of Fourier transform
 - i) Multiplication in time domain
- ii) Convolution in time domain

(7M+8M)

- 4. a) What is poly-wiener criterion and explain how it is related to physical reliability of a system
 - b) Find the impulse response h(t) of an LTI system with the input and output related

by the equation
$$y(t) = \int_{-\infty}^{\infty} e^{-(t-\tau)} x(\tau - 2)$$
. (8M+7M)

5. a) Compute the auto correlation function of the following signal shown in Figure 1 below:



b) Prove that the auto-correlation function and energy density spectrum form a Fourier transform pair. (8M+7M)

www.FirstRanker.com

Code No: R21044

R10

SET - 1

- 6. a) Explain sampling theorem for Band limited signals with a graphical example
 - b) Derive the expression for transfer function of flat top sampled signal.

(8M+7M)

- 7. a) Find the Laplace transform of $\left[4e^{-2t}\cos 5t 3e^{-2t}\sin 5t\right]u(t)$ and its region of convergence.
 - b) Find the inverse Laplace transform of $x(s) = \frac{1 + e^{-2s}}{3s^2 + 2s}$. (8M+7M)
- 8. a) Find the Z-transform of $x(n) = \left(\frac{1}{4}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(-n-1)$.
 - b) Find the inverse Z-transform of $x(z) = \frac{z}{z(z-1)(z-2)^2}$ for |z| > 2. (8M+7M)

www.FirstRanker.com

Code No: R21044

R10

SET - 2

II B. Tech I Semester Regular Examinations, March – 2014 SIGNALS AND SYSTEMS

(Com. to ECE, EIE, ECC, BME)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Verify the orthogonality of the following functions: $S_1(t) = 1$ and $S_2(t) = c(1-2t)$ in the interval [0 1].
 - b) Find whether the following signals are even or odd

i) $x(n) = \sin(-2\pi n)$

ii) $x(n) = \cos(2\pi n)$

(7M+8M)

(8M+7M)

- 2. a) Find the exponential Fourier series of a signal $x(t) = \cos 5t \sin 3t$.
 - b) Find the trigonometric Fourier series of f(x) = 3x and $x \in (-\pi, \pi)$.
- 3. a) Find the Fourier Transform of $Ae^{-|at|} \sin c2wt$ by applying convolution theorem.
 - b) Find Fourier transform of a burst of N cycles of a sine wave of period T₀ seconds. A burst of sine wave can be modeled as an infinite duration signal multiplied by a rectangular window, and then employ the convolution property of the Fourier transform for the product of two signals. Sketch the spectrum of the signal. (7M+8M)
- 4. a) For an LTI system described by the transfer function $H(s) = \frac{s+3}{(s+2)^2}$. Find the response to

The following inputs i) cos(2t + 60)

- ii) e^{j3i}
- b) Derive the relationship between bandwidth and rise time.

(9M+6M)

- 5. a) Find the auto correlation function of a signal $R(z) = e^{-2\alpha|\tau|}$ and also determine the spectral density of the process.
 - b) Find the energy in the signal $f(t) = e^{-at}u(t)$ and find the bandwidth ω such that 95% of the energy is contained in frequency below ω . (8M+7M)

1 of 2

www.FirstRanker.com

Code No: R21044

R10

SET - 2

6. a) The Fourier transform of a sampled signal is given by $x(f) = \sum_{m=0}^{N-1} x(m)e^{-j2\pi fm}$

Using the above equation, prove that the spectrum of a sampled signal is periodic, and hence state the sampling theorem.

b) Explain the effects of under sampling with suitable examples.

(8M+7M)

- 7. a) Find the Laplace transforms of the following function using the time-shifting property where ever it is appropriate
 - i) u(t) u(t-1)
- ii) $e^{-t}u(t-\tau)$
- b) Find inverse Laplace transform of the following function $e^{-2s} \left(\frac{2s+5}{s^2+5s+6} \right)$. (8M+7M)
- 8. a) Compare Laplace transform and Fourier transform in detail.
 - b) Find the inverse z transform of $\frac{z(22-5z)}{(z+1)(z-2)^2}$.

(7M+8M)

www.FirstRanker.com

Code No: R21044

R10

SET - 3

II B. Tech I Semester Regular Examinations, March – 2014 SIGNALS AND SYSTEMS

(Com. to ECE, EIE, ECC, BME)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Define mean square error and derive the equation for evaluating mean square error.
 - b) Derive the condition for orthogonality of two signals and also prove that $\sin(nw_0t)$ and $\cos(mw_0t)$ are orthogonal to each other for all integer values of m and n. (7M+8M)
- 2. a) Represent the Fourier series of the signal $x(t) = 3\cos\left(\frac{\pi}{4} + \frac{\pi t}{2}\right)$ using the method of inspection.
 - b) Find the Fourier series of a triangular function given by the equation $g(x) = \pi + x$ for $-\pi \le x \le 0$ else $g(x) = \pi x$ for $0 \le x \le \pi$ (8M+7M)
- 3. a) Find the Fourier Transform of the following
 - i) Impulse function $\delta(t)$
- ii) Unit step function.
- b) Find Inverse Fourier Transform of $x(\omega) = \frac{1}{\sqrt{1+\omega^2}} e^{\left(-j \tan^{-1}(\omega)\right)}$ (8M+7M)
- 4. a) Describe and compare all the ideal characteristics of low pass, high pass and band pass filters
 - b) Define signal bandwidth and obtain the conditions for the distortion less transmission through a system. (8M+7M)
- 5. a) Explain how a signal is extracted from a noisy environment by using filtering technique.
 - b) Distinguish between Energy spectral density and power spectral density and also state and prove Parseval's theorem for energy signal. (7M+8M)
- 6. a) Consider the analog signal $x_a = 3\cos(100\pi)$ then i) determine the minimum sampling rate required to avoid aliasing ii) suppose the signal is sampled at two different sampling rates of $f_s = 200HZ$ and $f_s = 75HZ$, then find the discrete time signals obtained after sampling in each case separately
 - b) Explain about band pass sampling.

(6M+9M)

- 7. a) Find the Laplace transform of $f(t) = \cos t$ for $0 < t < 2\pi$ and $f(t) = 1 \sin t$ for $t \ge 2\pi$
 - b) Find the inverse Laplace transform of $F(s) = \frac{e^{-s}(s-2)}{(s^2-4s+3)}$. (8M+7M)
- 8. a) Find the Z-Transform of $x[n] = 7\left(\frac{1}{3}\right)^n \cos\left(\frac{\pi}{4} + \frac{2n\pi}{6}\right)u[n]$.
 - b) Find the inverse Z-Transform of $x(z) = \frac{2z(3z+17)}{(z-1)(z^2-6z+25)}$. (8M+7M)

Code No: R21044

R10

SET - 4

II B. Tech I Semester Regular Examinations, March – 2014 SIGNALS AND SYSTEMS

(Com. to ECE, EIE, ECC, BME)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

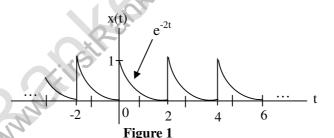
- 1. a) Prove that sinusoidal functions and complex exponential functions are orthogonal functions.
 - b) A rectangular function defined as $f(t) = \begin{cases} A & 0 < t < \frac{\pi}{2} \\ -A & \frac{\pi}{2} < t < \frac{3\pi}{2} \end{cases}$. Approximate the above $A & \frac{3\pi}{2} < t < 2\pi$

rectangular function by $A\cos t$ between the intervals $(0, 2\pi)$ such that mean square error is minimum. (7M+8M)

2. a) Calculate the Fourier series coefficients of the following continuous-time signal

$$x(t) = \begin{cases} 1 & \text{for } 0 \le t \le 1 \\ -1 & \text{for } 1 \le t \le 2 \end{cases}$$
 With a fundamental period of 2.

b) Determine the Fourier series coefficients for the signal x(t) shown in below figure 1.



- 3. a) A system has the output $y[n] = \left(\frac{1}{2}\right)^n u(n) + \frac{1}{2}\left(\frac{1}{4}\right)^n u(n)$ for the input $x[n] = \left(\frac{1}{4}\right)^n u(n)$
 - i) Find the Fourier transforms of both x[n] and y[n]
 - ii) Find the frequency response $H\left(e^{jw}\right)$
 - b) Explain about Hilbert Transform with appropriate equations.

(9M+6M)

(8M+7M)

1 of 2

www.FirstRanker.com

Code No: R21044

R10

SET - 4

- 4. a) For an input signal $x(t) = \delta(t) + e^{-t}u(t)$ and a LTI system with an impulse response $h(t) = e^{t}u(-t)$ Find the output y(t)
 - b) Derive the relationship between bandwidth and rise time of a low pass filter. (8M+7M)
- 5. a) Find the total energy of the signal $x(t) = \frac{\sin(10t)}{\pi t}$ using the Parseval's equation
 - b) Prove that the auto-correlation function and energy density spectrum form a Fourier transform pair. (8M+7M)
- 6. a) A complex signal x(t) with a Fourier transform $X(j\omega)$ is zero everywhere except for the interval $-5 < \omega < 2$. Using $X_p(j\omega) = \frac{1}{T} \sum_{K=-\infty}^{\infty} X(j(w-k\omega_s))$, determine the minimum sampling frequency ω_s to ensure a reconstruction of the original signal x(t) without losing information
 - b) Explain the effect of under sampling with an example and neat diagrams. (8M+7M)
- 7. a) Solve the following differential equation using Laplace transform

 $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = u_2(t)$ with the initial conditions y(0) = 0 and y(0) = 1

- b) Find the inverse Laplace transform of $F(s) = \frac{(2s-3)}{(s^2 + 2s + 10)}$. (8M+7M)
- 8. a) Find the Z-Transform of $u[nT]e^{-\alpha nT} \sin \omega nT$
 - b) Find the inverse Z-Transform of $x(z) = \frac{z(2z^2 11z + 12)}{(z-1)(z-2)^3}$. (8M+7M)