

Code No: R21026

www.FirstRanker.com

R10

www.FirstRanker.com

SET - 1

II B. Tech I Semester Supplementary Examinations, September - 2014 ELECTRONIC DEVICES AND CIRCUITS					
(Com. to EEE, ECE, EIE, ECC, CSE, IT, BME) Time: 3 hours Max. Marks:					
	Answer any FIVE Questions				
	All Questions carry Equal Marks				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
1.	a) Explain about one dimensional motion of charged particles in electric field.				
	b) Define the term current density and derive the expression for current density of co	onductor. (8M+7M)			
2.	a) Describe Hall Effect. Give the applications of it.				
	b) What is meant by intrinsic and extrinsic semiconductors? Explain.	(8M+7M)			
3.	a) Explain operation of PN junction diode when it is connected in reverse bias and t bias.	Forward			
	b) The voltage across silicon diode is 0.7 V when 3mA current flows through it. If the increases to 0.75 V then find the current in silicon diode.	he voltage (8M+7M)			
4.	a) Define ripple factor and calculate the ripple factor of a half wave rectifier.				
	b) Define rectifier efficiency and derive the expression for rectifier efficiency of full rectifier.	wave (8M+7M)			
5.	a) Discuss about transistor current components.				
	b) What is early effect? Explain the effect of early effect on transistor characteristics	s. (8M+7M)			
6.	a) Give the construction details and characteristics of enhancement mode MOSFET.				
	b) Define the following terms: i) Drain resistance ii) Transconductance iii) Amplification factor	or. (8M+7M)			
7.	a) What is meant by transistor biasing? Describe various biasing methods.				
	b) Draw the collector-Base bias circuit and derive the expression for stability factor.				
		(8M+7M)			
8.	a) Find voltage gain, current gain, input impedance and output impedance of transist amplifier using simplified hybrid model.	tor CC			
	b) Compare transistor CE, CB and CC amplifiers.	(10M+5M)			



www.FirstRanker.com

www.FirstRanker.com

	ode No: R21026 (R10)	(SET - 2)				
	II B. Tech I Semester Supplementary Examinations, September - 2014 ELECTRONIC DEVICES AND CIRCUITS					
	(Com. to EEE, ECE, EIE, ECC, CS					
Tir	me: 3 hours	Max. Marks: 75				
	Answer any <b>FIVE</b> Questi					
	All Questions carry <b>Equal</b> N	Aarks ~~~~				
1	a) Describe the percilal and perpendicular electric and me	anotic fields				
1.	<ul><li>a) Describe the parallel and perpendicular electric and ma</li><li>b) Write the applications of CRO.</li></ul>	(10M+5M)				
	b) which the applications of CKO.					
2.	a) Explain the following terms:					
	i) Drift current ii) Diffusion current					
	b) Explain the energy band theory of crystals.	(8M+7M)				
	b) Calculate the reverse saturation current for a silicon PN of 15 mA at 27 ^o C when the forward bias voltage is 680					
4.						
т.	a) Explain the operation of bridge rectifier with relevant w	vaveforms.				
т.	<ul><li>a) Explain the operation of bridge rectifier with relevant v</li><li>b) Derive the expression for ripple factor of a half wave re</li></ul>					
т.	<ul><li>a) Explain the operation of bridge rectifier with relevant v</li><li>b) Derive the expression for ripple factor of a half wave re</li></ul>					
		ectifier with L-section filter. (8M+7M)				
	b) Derive the expression for ripple factor of a half wave re	ectifier with L-section filter. (8M+7M)				
5.	<ul><li>b) Derive the expression for ripple factor of a half wave real</li><li>a) Explain the input and output characteristics of transisto</li><li>b) Draw the Ebers-Moll model of transistor and explain.</li></ul>	ectifier with L-section filter. (8M+7M) r in common base configuration. (8M+7M)				
5.	<ul> <li>b) Derive the expression for ripple factor of a half wave real</li> <li>a) Explain the input and output characteristics of transisto</li> <li>b) Draw the Ebers-Moll model of transistor and explain.</li> <li>a) Discuss about the operation of depletion mode MOSFE</li> </ul>	ectifier with L-section filter. (8M+7M) r in common base configuration. (8M+7M) T.				
5.	<ul><li>b) Derive the expression for ripple factor of a half wave real</li><li>a) Explain the input and output characteristics of transisto</li><li>b) Draw the Ebers-Moll model of transistor and explain.</li></ul>	ectifier with L-section filter. (8M+7M) r in common base configuration. (8M+7M) T.				
5.	<ul> <li>b) Derive the expression for ripple factor of a half wave real</li> <li>a) Explain the input and output characteristics of transisto</li> <li>b) Draw the Ebers-Moll model of transistor and explain.</li> <li>a) Discuss about the operation of depletion mode MOSFE</li> <li>b) Compare the Bipolar Junction transistor and Field effect</li> </ul>	ectifier with L-section filter. (8M+7M) r in common base configuration. (8M+7M) T. ct transistor. (10M+5M)				
5. 6.	<ul> <li>b) Derive the expression for ripple factor of a half wave real</li> <li>a) Explain the input and output characteristics of transistor</li> <li>b) Draw the Ebers-Moll model of transistor and explain.</li> <li>a) Discuss about the operation of depletion mode MOSFE</li> <li>b) Compare the Bipolar Junction transistor and Field effect</li> <li>a) Explain how the stability is improved in self bias circuit</li> </ul>	ectifier with L-section filter. (8M+7M) r in common base configuration. (8M+7M) TT. ct transistor. (10M+5M) t.				
5. 6.	<ul> <li>b) Derive the expression for ripple factor of a half wave real</li> <li>a) Explain the input and output characteristics of transisto</li> <li>b) Draw the Ebers-Moll model of transistor and explain.</li> <li>a) Discuss about the operation of depletion mode MOSFE</li> <li>b) Compare the Bipolar Junction transistor and Field effect</li> </ul>	ectifier with L-section filter. (8M+7M) r in common base configuration. (8M+7M) T. et transistor. (10M+5M)				
5. 6. 7.	<ul> <li>b) Derive the expression for ripple factor of a half wave real</li> <li>a) Explain the input and output characteristics of transistor</li> <li>b) Draw the Ebers-Moll model of transistor and explain.</li> <li>a) Discuss about the operation of depletion mode MOSFE</li> <li>b) Compare the Bipolar Junction transistor and Field effect</li> <li>a) Explain how the stability is improved in self bias circuit</li> </ul>	ectifier with L-section filter. (8M+7M) r in common base configuration. (8M+7M) T. CT. ct transistor. (10M+5M) t. (8M+7M)				
5.	<ul> <li>b) Derive the expression for ripple factor of a half wave real</li> <li>a) Explain the input and output characteristics of transisto</li> <li>b) Draw the Ebers-Moll model of transistor and explain.</li> <li>a) Discuss about the operation of depletion mode MOSFE</li> <li>b) Compare the Bipolar Junction transistor and Field effect</li> <li>a) Explain how the stability is improved in self bias circuit</li> <li>b) Discuss about bias compensation using sensistors.</li> </ul>	ectifier with L-section filter. (8M+7M) r in common base configuration. (8M+7M) T. ct transistor. (10M+5M) t. (8M+7M)				



www.FirstRanker.com

www.FirstRanker.com

Code No: R21026



SET - 3

## II B. Tech I Semester Supplementary Examinations, September - 2014 ELECTRONIC DEVICES AND CIRCUITS (Com. to EEE, ECE, EIE, ECC, CSE, IT, BME)

Time: 3 hours

Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Derive the expression for electrostatic deflection sensitivity in cathode ray tube.
  - b) Explain the terms electric field and electric potential. Give the relationship between these two terms. (10M+5M)
- 2. a) Explain the following terms:
  - i) Mobility ii) Conductivity
  - b) a block of silicon is doped with a donor atom density of  $N_D = 3x10^{14}$  atoms/cm³ and with an acceptor atom density of  $N_A = 0.5x10^{14}$  atoms/cm³. Determine the resultant densities of free electrons and holes. Given intrinsic carrier concentration of silicon is  $1.5x10^{10}$  per cm³.

(8M+7M)

3. a) Draw and explain about VI characteristics of PN diode. b) Explain the operation of tunnel diode with the help of energy band diagrams. (8M+7M)4. a) Explain how the zener diode works as a regulator. b) Compare the various types of rectifiers. (8M+7M)5. a) Explain the input and output characteristics of transistor in common emitter configuration. b) Explain how transistor acts as an amplifier. (10M+5M)6. a) Explain the working of SCR and give the applications. b) What are the advantages of JFET compared to BJT? (10M+5M)7. a) Explain the self bias circuit and derive the expression for stability factor. b) Draw the circuit diagram for compensation of I_{co} using diode and explain. (8M+7M)8. a) Explain the determination of h-parameters from transistor characteristics. b) Draw the simple hybrid model of transistor. What are the conditions to use simple hybrid model. (8M+7M)



www.FirstRanker.com

www.FirstRanker.com

Co	de No: R21026 (R10)	(SET - 4)			
	II B. Tech I Semester Supplementary Examinations, September - 2014 ELECTRONIC DEVICES AND CIRCUITS (Com. to EEE, ECE, EIE, ECC, CSE, IT, BME)				
Tin		Iax. Marks: 75			
	Answer any <b>FIVE</b> Questions All Questions carry <b>Equal</b> Marks				
1.	<ul><li>a) Discuss about the force on charged particles in magnetic field.</li><li>b) Compare electrostatic deflection and magneto static deflection.</li></ul>	(8M+7M)			
2.	<ul><li>a) Discuss about continuity equation.</li><li>b) Explain the effect of heat on conductors and semiconductors.</li></ul>	(8M+7M)			
3.	<ul> <li>a) Discuss about Varactor diode and give the applications.</li> <li>b) A silicon PN junction has reverse saturation current of 30 nA at a temperature Calculate the junction current when the applied voltage is i) 0.7 V forward b ii) 10 V reverse bias.</li> </ul>				
4.	<ul> <li>a) Explain the operation of full wave rectifier. Write the merits of it when comparectifier.</li> <li>b) Draw the circuit diagram of full wave rectifier with π section filter and explain</li> </ul>				
5.	a) Discuss about photo transistor and list out the applications. b) Define the terms $\alpha$ and $\beta$ of transistor. Derive the relationship between these two	wo. (8M+7M)			
6.	<ul><li>a) Explain the drain to source characteristics of JFET.</li><li>b) Draw the characteristics of UJT and describe various regions.</li></ul>	(8M+7M)			
7.	<ul><li>a) Define the operating point. Explain the various reasons for instability in opera</li><li>b) What is meant by thermal runaway and write the condition to avoid thermal runawite transistor.</li></ul>	<b>e</b> 1			
8.	Draw the h-parameter model of transistor. Derive the general expressions f current gain, input impedance and output impedance of generalized transistor.	for voltage gain (15M			