Code No: R21054

R10

SET - 1

II B. Tech I Semester Supplementary Examinations, September - 2014 DIGITAL LOGIC DESIGN

(Com. to CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. Convert the following to decimal and then to binary
 - a) 1001101₁₆
- b) ABCD₁₆
- c) 7654_s
- d) 4725₈
- 2. a) Find the complement of $f = ab + \overline{c}d + \overline{e}$
 - b) Simplify the given function $f = (x + y) (x + y^{1})$
 - c) What are universal gates? Realize basic gates using universal gates.
- 3. Obtain minimal SOP expression for the given Boolean function using K-map. $F(A,B,C,D) = \sum (0,1,4,6,8,9,10,12) + d(3,7,11,13,14,15)$ and draw the circuit using 2 input NAND gates.
- 4. a) Design a full adder circuit using AND, OR, and NOT gates
 - b) Design BCD to Gray code converter using full adder circuits.
- 5. a) $F(W,X,Y,Z) = \sum m(0,1,4,7,9,12,14)$ realize using 1:16 de MUX.
 - b) What do you mean by hazards in combinational circuits? How do you design hazard free circuit? Explain with suitable example.
- 6. A combinational circuit is defined by the function

 $F_1(A,B,C) = \sum m(3,5,6,7)$

 $F_2(A,B,C) = \sum_{i=1}^{n} m(0,2,4,7)$

Implement the circuit with a PLA having three inputs, four product terms and two outputs.

- 7. a) Distinguish between combinational and sequential logic circuits.
 - b) Convert a D flip flop into
 - i) SR flip flop
- ii) JK flip flop
- iii) T- flip flop
- 8. a) Design a Mod -6 synchronous counter using J-K flip flops.
 - b) Design a 3 stage shift register, which is a universal register.

www.FirstRanker.com

Code No: R21054

R10

SET - 2

II B. Tech I Semester Supplementary Examinations, September – 2014 DIGITAL LOGIC DESIGN

(Com. to CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Convert to octal i) 10101₂
- ii) 110110111₂
- b) Convert the decimal number 460.8 to base 6, 8 and 12
- c) Convert to decimal
- i) 4CA ₁₆
- ii) 3BE₁₆
- 2. a) Explain the fundamental postulates of Boolean Algebra
 - b) Express the Boolean function $F = (AB + A^1 B^1) (CD^1 + C^1 D)$ as a sum of minterms.
- 3. Simplify the following using K-map method and implement the following function with NAND gates.

 $F(A,B,C,D,E) = \sum (0,2,4,6,9,13,21,23,25,29,31)$

- 4. a) Generate 2's complement for the given 4 bit binary number using full-adders
 - b) Design Octal to Binary encoder using OR gates.
- 5. a) Implement the following logic function using a 8 X 1 multiplexer

 $F(A,B,C,D) = \sum m(1,2,5,11,12,13,14,15)$

- b) With the help of logic diagram and a truth table, explain a 3 line to 8 line decoder.
- 6. a) Write short notes on: i) PLA
- ii) PAL
- iii) error detection and correction.

- b) Compare PLA, PAL and PLD.
- 7. a) Define the following terms with respect to flip flops
 - i) Hold time
- ii) Set-Up time
- iii) Propagation delay time.
- b) What is meant by race around condition? Explain how it is avoided in master and slave JK flip flop.
- 8. a) Show how BCD ripple counter can be implemented using flip flops
 - b) When do you prefer synchronous counters?

Code No: R21054

R10

SET - 3

II B. Tech I Semester Supplementary Examinations, September - 2014 DIGITAL LOGIC DESIGN

(Com. to CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Subtract the following numbers using 10's and 9's complement
 - i) 5250-425
- ii) 826-359
- b) Express the following numbers in decimal and octal number systems.
 - i) (110101.1011)₂
- ii) CDEA₁₆
- 2. a) Find the sum of min terms and product of max terms for the given function F(x, y, z, w) = y' w + x' w + y w. And realize the circuit using universal gates
 - b) Find the dual of f = AC + BD + A
- 3. Obtain the simplified expressions in SOP for the following Boolean function using k-map
 - i) F (A, B, C, D) = \sum (7, 13, 14, 15)
 - ii) $F(W,X,Y,Z) = \sum (1,3,5,6,11,13)$
- 4. a) Implement a full subtractor with two half subtractors and an OR gate.
 - b) Design an excess-3 to BCD code convert using a 4-bit full adder circuit.
- 5. a) Implement the following with a multiplexer $F(A,B,C,D) = \sum (0,1,3,4,8,9,15)$
 - b) Design a combinational circuit for an octal to binary encoder.
- 6. Implement the following Boolean function with a PLA having three inputs, four product terms and two outputs.

$$F_1(X,Y,Z) = \sum (0,1,2,4), F_2(X,Y,Z) = \sum (0,5,6,7)$$

- 7. a) Realize D flip flop using JK flip flop.
 - b) Give the transition Table for the following flip flops.
 - i) RS flip flop
- ii) J-K flip flop
- iii) T- flip flop
- iv) D flip flop
- 8. a) Draw the circuit diagram of 4bit ring counter using T flip flop and draw the corresponding timing diagrams.
 - b) Explain synchronous and ripple counters and compare them.

www.FirstRanker.com

Code No: R21054

R10

SET - 4

II B. Tech I Semester Supplementary Examinations, September - 2014 DIGITAL LOGIC DESIGN

(Com. to CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Convert the following decimal numbers to binary i) 45.36 ii) 76.08
 - b) Perform the following operations using 2's arithmetic
 - i) 10110.1101-1010.111
- ii) 111010.1101-11010.0010
- 2. a) List the truth tables of the function
 - i) $F=xy+xy^1+y^1z$
- ii) $F = x^1 z + yz$
- iii) $F = x^1 z + xy$
- b) Given $AB^1+A^1B=C$, show that $AC^1+A^1C=B$
- 3. Simplify the following using k-map method and implement the following function with NAND gates
 - i) $F(A,B,C,D) = \Pi(0,1,3,5,6,7,10,14,15)$
 - ii) Y = A' B' C' D' + A' B' C D' + A B' C' D' + A' C D + A B' C D'
- 4. a) With the help of logic diagram explain a parallel adder / subtractor using 2's complement system.
 - b) Design a full adder using half adders and carry look ahead adders.
- 5. a) A combinational circuit is defined by the following three functions $F_1 = (x \ y)^1 + xyz^1$, $F_2 = x^1 + y$, $F_3 = x \ y + (x \ y)^1$ design the circuit with a decoder and external gates.
 - b) List the applications of Multiplexer and Demultiplexer.
- 6. a) Write a brief notes on Architecture of PLD's.
 - b) Design a BCD to excess 3 code converter using PAL.
- 7. a) Draw and explain the working of Master slave JK flip flop.
 - b) Design a sequence detector that detects 110010. Implement the sequence detector by using D type flip-flops.
- 8. a) Design Mod -12 counter using S-R flip flop.
 - b) Compare the merits and demerits of ripple and synchronous counters.