

SET - 1

II B. Tech I Semester Supplementary Examinations, September - 2014

ELECTRICAL CIRCUIT ANALYSIS - I
(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) For the circuit shown in Figure 1a, determine the resistance between battery E-terminals. The value of each resistance in the circuit is 1Ω.
b) For the circuit shown in Figure 1 b determine the total impedance, total current and phase angle.

Figure 1a

Figure 1b
c) Determine the equivalent inductance of the circuit shown in Figure 1c between a and b terminals.

Figure 1c
2. a) Use nodal analysis to determine V_{1} and the power being supplied by the dependent current source in the circuit shown in Figure 2a.
b) Find $\mathrm{R}_{\text {in }}$ for the network shown in Figure 2 b, by using Y- Δ and $\Delta-\mathrm{Y}$ transformation?

5 A

Figure 2a

Figure 2b

SET - 1
3. a) Show that power consumed by a pure capacitor and a pure inductor is zero.
b) Determine the equivalent impedance between the terminals a-b of the network shown in Figure 3b, given an operating frequency of $5 \mathrm{rad} / \mathrm{s}$.

Figure 3b
4. a) Find the resonant frequency of the two terminal network shown in Figure 4a. Assume operating frequency of 50 Hz .

Figure 4a
b) A variable frequency source of $\mathrm{V}=200$ volt is applied to a series R - L circuit having $\mathrm{R}=10 \Omega$ and $\mathrm{L}=10 \mathrm{mH}$. Draw Z-locus and I -locus considering sample frequencies $\omega=0,500,1000,2000$ and $5000 \mathrm{rad} / \mathrm{sec}$.
5. a) A magnetic circuit consists of an iron ring of mean circumference 80 cm with cross-sectional area of $12 \mathrm{~cm}^{2}$ throughout. A current of 2 A in the magnetizing coil of 200 turns produce a total flux of 1.2 m Wb in the iron. Calculate:
i) the flux density in the iron
ii) the absolute and relative permeability of iron.
iii) the reluctance of the circuit.
b) Two coils have a mutual inductance of 0.4 H , if the current in one coil is varied from 4 A to 2 A in 0.5 sec , calculate
i) The average e.m.f induced in the second coil
ii) The rate of change of flux linked with the second coil assuming that it is wound with 300 turns.

SET - 1
6. a) Construct the dual of the network shown in Figure 6a.
b) Draw the oriented graph of network shown in below Figure 6b and also write the incidence matrix.

Figure 6a

7. a) Determine the maximum power which can be absorbed by a pure resistive load when placed across the output terminals A, B of the network shown in Figure 7a.
b) Determine the Thevenin's equivalent of network shown in Figure 7b; compute the power delivered to the load resistor R_{L}.

Figure 7a

Figure 7b
8. a) Verify the reciprocity theorem for the following circuit shown in Figure 8a.
b) Calculate the change in the current in the circuit shown in Figure 8b, by compensation theorem, when the reactance has changed to $\mathrm{j} 35 \Omega$.

Figure 8b
Figure 8a

SET - 2

II B. Tech I Semester Supplementary Examinations, September - 2014
 ELECTRICAL CIRCUIT ANALYSIS - I
 (Electrical and Electronics Engineering)
 Answer any FIVE Questions
 All Questions carry Equal Marks

Time: 3 hours
Max. Marks: 75

1. a) Determine the value of voltage V and the power supplied by the independent current source for the circuit shown in figure 1 a
b) For the circuit shown in figure $1 b$, find i_{1}, i_{2}, i_{3} and i_{4}.

Figure 1a
2. a) Given the circuit as shown in Figure 2a, determine resistance between the terminals A, B.
b) Use nodal analysis to find the voltage V_{X} in the circuit shown in Figure 2b.

Figure 2b
3. a) Determine the effective value of the wave form shown in Figure 3a.
b) A capacitor of $200 \mu \mathrm{~F}$ is connected across a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) the reactance of the capacitor (ii) r m s value of current (iii) the maximum current.

Figure 3a

SET - 2
4. a) In the network shown in the figure 4 a find the value of C for resonance to take place when $\omega=500 \mathrm{rad} / \mathrm{sec}$ determine the branch currents.

b) A series RC circuit having variable R and $\mathrm{C}=20 \mu \mathrm{f}$ is supplied from AC source having voltage $V=200$ Volt at $\omega=2000 \mathrm{rad} / \mathrm{sec}$. Draw I - locus for sample values of $R=0,5,15,25,35,50 \Omega$.
5. a) Calculate the inductance of a solenoid of 2000 turns wound uniformly over a length of 40 cm on a cylindrical paper tube of 5 cm in diameter. Air is the medium. Calculate the e.m.f induced when a current increasing at the rate of $200 \mathrm{~A} / \mathrm{sec}$ flows through the winding.
b) Derive an expression for co-efficient of coupling in a magnetic circuit.
c) Explain about dot convention in magnetic circuits.
6. a) For the network shown in Figure 6a, obtain the fundamental cut-set matrix.
b) Construct the dual of the network shown in Figure 6b.

Figure 6a

SET - 2
7. a) Use Thevenin's theorem to find the current through the 2Ω resistor in the circuit shown in below Figure 7a.

b) By using super position therom calculate the current through ($2+\mathrm{j} 3$)ohm impendence branch of the circuit in Figure 7b.

Figure 7b
8. a) Verify the reciprocity theorem for the following circuit shown in 8a.
b) Find the current I of the circuit shown in 8 b using superposition theorem

Figure 8a

Figure 8b
www.FirstRanker.com

SET - 3

II B. Tech I Semester Supplementary Examinations, September - 2014

ELECTRICAL CIRCUIT ANALYSIS - I
(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Explain in detail about dependent and independent sources.
b) Show that volt-ampere relationship of R, L and C are linear.
c) Using source transformation, determine the power dissipated by the $5.8 \mathrm{k} \Omega$ resistor shown in

Figure 1b.

Figure 1b
2. a) Find the R_{a-b} for the resistive network as shown in Figure 2a.
b) For the circuit shown in Figure 2b below, compute the voltage across each current source.

Figure 2a

Figure 2b
3. a) A resistance of 12Ω, an inductance of 0.15 H and capacitance of $100 \mu \mathrm{~F}$ are connected in series across $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate: a) current b) Power factor of the current c) Voltage drop across resistance, inductance and capacitance d) Draw the complete phasor diagram of the circuit.
b) Obtain expressions for the time-domain currents i_{1} and i_{2} in the circuit shown below

Figure 3b
4. a) A coil of 2.2Ω resistance and 0.01 H is connected in series with a capacitor across 220 V mains. Find the value of capacitance such that the maximum current flows in the circuit at a frequency of 100 Hz . Also, find the current and voltage across the capacitor.
b) Show that the locus of current of a series circuit consisting of resistance and inductance with resistance varies and inductive reactance fixed, when supplied by a constant ac voltage source, lies on a circular path.
5. a) Two magnetically coupled coils have 500 and 1000 turns respectively. A current of 1 A in coil 1 produces a flux of 0.5 mWb links all turns of the coil 1 only and a mutual flux of 0.7 mWb . Find $\mathrm{L}_{1}, \mathrm{~L}_{2}$.
b) A Current of 10 A through a coil of 200 turns produces a flux of 2 mWb . If this current is reduced to 2 A in 0.1 sec , calculate the average e.m.f induced in the coil, assuming flux to be proportional to current.
6. a) Draw the directed graph, tree and show the loops for the network shown in Figure 6a below.
b) Construct the dual of the network shown in Figure 6b.

Figure 6a

Figure 6b
7. Determine the maximum power which can be absorbed by a pure resistive load when placed across the output terminals a, b of the network shown in Figure 7.

Figure 7
2 of 3

SET - 3
8. a) Verify the reciprocity theorem for the network shown in below Figure 8a by interchanging V and R_{L}.
b) For the circuit shown Figure 8 b below, use superposition to obtain the voltage across each current source.

Figure 8a

Figure 8b
www.FirstRanker.com

SET - 4

II B. Tech I Semester Supplementary Examinations, September - 2014
 ELECTRICAL CIRCUIT ANALYSIS - I
 (Electrical and Electronics Engineering)

Max. Marks: 75

Time: 3 hours
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Determine the power dissipated by the $R=1 \Omega$ resistor using source transformation for the circuit shown in Figure 1(a)
b) Determine the equivalent capacitance C_{eq} of the circuit shown in Figure 1(b).

Figure 1(a)

Figure 1(b)
2. a) The network in Figure 2(a) stores $534.8 \mu \mathrm{~J}$ of energy when a voltage of 2.5 V is connected to terminals ' a ' and ' b ', what is the value of C_{x}. All capacitance values are in $\mu \mathrm{F}$.
b) Use mesh analysis to find 40 ohms resistance in the circuit shown in Figure 2(b).

Figure 2(a)

Figure 2(b)
3. a) An impendence of $(4-j 10) \Omega$ is connected in parallel with an impendence $(6+j 8) \Omega$. The circuit is fed from a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the current in each branch, total circuit current, circuit impendence, power factor, active power, reactance power and apparent power.
b) Find the current delivered by the source for the circuit shown in Figure 3 Take $V_{s}(t)=40$ $\sin 3000 \mathrm{t}$ volts.
4. a) Determine the resonant frequency of the circuit shown in Figure 4(a).
b) Explain procedure to draw the locus diagram of R-C series circuit when ' C ' is varying.

Figure 3

Figure 4(a)
www.FirstRanker.com

Code No: R21023

SET - 4
5. a) If the two identical coils have an equivalent inductance of 0.08 H in series aiding and 0.035 H in series opposing. What are the values of $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{M}$ and K .
b) An iron ring of 10 cm mean diameter having a cross sectional area of $60 \mathrm{~cm}^{2}$ is wound 200 turns of wire. Calculate the exciting current required to establish a flux density of $1 \mathrm{~Wb} / \mathrm{m}^{2}$ if the relative permeability of iron is 1000 . What is the value of energy stored?
6. a) Construct the dual of the network shown in Figure 6(a).
b) How many trees are possible for the graph of the network of Figure 6(b). Draw all the trees possible.

Figure 6(b)
7. a) In the network shown in Figure 7(a), Find the value of Z_{L} so that the power transfer from the source is maximum. Also find $\mathrm{P}_{\text {max }}$.
b) Find the Thevenin's equivalent circuit across the terminals a-b for the circuit shown in Figure $7(b)$. Take $V_{1}=100 \angle 0^{\circ} V$ and $V_{2}=100 \angle 90^{\circ} V$.

Figure 7(a)

Figure 7(b)
8. a) State whether the following network shown in Figure 8(a) is reciprocal or not.
b) Use superposition to find the value of V_{x} in the circuit shown in Figure 8(b).

Figure 8(a)

Figure 8(b)

