

www.FirstRanker.com

Code No: R21029

R10

SET - 1

II B. Tech I Semester Supplementary Examinations, September - 2014 ELECTRO MAGNETIC FIELDS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law.
 - b) A square sheet defined by $-2 \le x \le 2m$, $-2 \le y \le 2m$ lies in the z = -2m plane. The charge density on the sheet is $\rho_s = (x^2 + y^2 + z^2)^{3/2} \, nC \, /m^2$. Calculate the electric field intensity at the origin.
- 2. a) Derive Poisson's and Laplace's equations from the fundamentals.
 - b) Derive the expression for torque developed on dipole placed in a magnetic field.
- 3. a) Derive the condition that exist of the boundary between two perfect dielectrics separated by a sharp boundary.
 - b) Using Laplace equations, obtain the expression to the capacity of a parallel plate condenser.
- 4. Using Biot- Savart's law, derive an expression for inductance per unit length of a long coaxial cable with radii of inner and outer conductors as 'a' and 'b' (b>a) respectively.

www.FirstRanker.com

Code No: R21029

R10

SET - 1

- 5. a) Derive the Maxwell's third equation and explain its importance.
 - b) A square loop 10 cm on a side has 500 turns that are closely and tightly wound and carries a current of 120 A. Determine the magnetic flux density at the centre of the loop.
- 6. Writer a shot notes on the following:
 - a) Lorentz force equation.
 - b) Magnetic dipole and dipole moment.
- 7. a) Derive an inductance of a solenoid.
 - b) Calculate the inductance of a solenoid of 2000 terns wound uniformly over a length of 0.5m an a cylindrical paper tube of 0.04m in diameter the medium is air.
- 8. a) Derive Maxwell's equation based on Ampere's circuit law for a time varying field.
 - b) A parallel plate capacitor with plate area of 5cm^2 and plate separation of 3mm has a voltage $50\sin 10^3$ t V applied to its plates. Calculate the displacement current assuming $\varepsilon = 2\varepsilon_0$.

www.FirstRanker.com

SET - 2

Code No: R21029 (R10)

II B. Tech I Semester Supplementary Examinations, September - 2014 ELECTRO MAGNETIC FIELDS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) A circular ring of charge with radius 5m lied in z = 0 plane with centre at origin. If the line charge density is 10 nC/m. Find the pint charge a placed at the origin. Which will produce same E at the point (0, 0, 6) m.
 - b) Determine the electric field intensity due to infinite line charge, at a point perpendicular to its plane and at a gives distance from the line charge from first principle.
- 2. a) Differentiate and explain conductors, insulators and dielectrics.
 - b) Derive Poisson's and Laplace equations starting from point form of Gauss Law.
 - c) Derive an expression for torque due to a dipole that is present in an electric field.
- 3. a) Obtain the expression for energy and energy density in an electric field.
 - b) Express ohm's law in point form and also describe equation of continuity.
- 4. a) Currents $I_1 = I_2 = 10$ A flows in opposite directions through two long parallel wires, separated by 15cm. Find the magnitude and direction of the MFI at any point 15cm away from each other.
 - b) Show that $\nabla .B = 0$.
- 5. a) Find the magnetic field intensity at centre of a square of sides equal to 5 m and carrying a current equal to 10 A.
 - b) A current sheet $K_1 = \frac{8}{\mu_0} \vec{a}_y$ A/m, at x=0 separates region 1, x < 0 and μ_{r1} =3, from region 2,

$$x > 0$$
 and $\mu r 2 = 1$. Given $H_1 = \frac{10}{\mu_0} (\vec{a}_y + \vec{a}_z)$ A/m. Find H_2 .

- 6. Explain the following:
 - a. Torque on a current loop placed in a magnetic field.
 - b. Force on a straight long conductor carrying a current in a magnetic field.
- 7. a) Drive the expression for mutual inductance between a straight long wire and a square loop wire in the same place.
 - b) Derive the expression for energy density in a magnetic field.
- 8. Write and explain differential and integral forms of Maxwell's equation and also mention them for fields varying harmonically with time.

www.FirstRanker.com

Code No: R21029

SET - 3

II B. Tech I Semester Supplementary Examinations, September - 2014 ELECTRO MAGNETIC FIELDS

R10

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Prove that the electric field intensity is the negative gradient of potential.
 - b) State and explain Gauss law. What are the limitations of Gauss law?
- 2. a) Find the potential function and electric field intensity for the region between two concentric right circular cylinders where V=0 at r=0.1 cm and V=750 at r=10 cm. Assume free spacing and neglect fringing.
 - b) Two point charges Q_1 =4nC and Q_2 =-2nC are kept at (2,0,0) and (6,0,0). Express electric field at (4, -1, 2).
- 3. a) Derive the continuity equation.
 - b) What is displacement current? Find the displacement current density with a parallel plate capacitor having dielectric with $\epsilon_r = 8$, area of plates = 0.01m^2 , distance of separation = 0.05 mm and the capacitor voltage is 200 sin 200t.
- 4. a) Derive the expression for magnetic field intensity at the center of a circular wire.
 - b) A circuit carrying a direct current of 8A forms a regular hexagon inscribed in a circle of radius 0f 1.5 m. Calculate the magnetic flux density at the centre of the hexagon. Assume the medium to be free space.
- 5. a) Discuss the application of Amperes current law for unsymmetrical surfaces.
 - b) Find the magnetic field intensity at centre of a square of sides equal to 10 m and carrying a current equal to 75 A.
- 6. a) Derive the torque expression on a current loop placed is a magnetic field.
 - b) Explain magnetic dipole and dipole moment.
- 7. a) Derive the expression for self Inductance of solenoid
 - b) A solenoid of 10 cm in length consists of 1000 turns having the cross section radius of 1 cm. Find the inductance of solenoid. What is the value of current required to maintain a flux of 1 milli-Wb in the toroid. Take $\mu_r = 1500$.
- 8. a) Explain Faraday's law of electromagnetism.
 - b) State and explain Poynting theorem.

www.FirstRanker.com

Code No: R21029 R10 **SET - 4**

II B. Tech I Semester Supplementary Examinations, September - 2014 **ELECTRO MAGNETIC FIELDS**

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

> Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) State and explain Gauss's law of electromagnetic is the integral form.
 - b) Using Gauss's law in integral form, obtain the electric field at all points due to the following volume charge distribution, in cylindrical coordinates.
- 2. a) In spherical coordinates V=0 for r=0.1 and V=100 for r=2 m. Find the potential function. Use Laplace's equation.
 - b) A uniform charge density of ρ_{ν} C/m² exists throughout the volume of a sphere of radius 'b' meters. Using Poisson's equation, find the value of electric filed intensity and potential at any point inside the sphere for which $0 \le r \le b$.
- 3. a) Explain and derive the boundary conditions for a dielectric-dielectric interface.
 - b) A capacitor consists of two infinite parallel conducting plates 10cm apart. The space between conductors consists of two layers, each of 5cm thick. One layer has $\epsilon_r = 10$ and the other layer is an air. If the potential difference of 125V is applied to the capacitor, Find:
 - i) Magnitude of \overline{D} and \overline{E} both layers. ii) Energy density.
- 4. A circular loop of wire of radius 'r' lying in xy plane with its centre at origin carries a current 'I' is the $+\phi$ direction. Using Biot- savart law find H(0, 0, Z) and H(0, 0, 0)
- 5. a) Derive the expression for point form of Ampere's circuital law.
 - b) A current sheet $K_1 = 10\vec{a}_z$ A/m lies in the x=4 m plane and second sheet $K_2 = -8\vec{a}_z$ A/m is at x=-5m. Find \overline{H} in all regions.
- 6. a) When current carrying wire is placed in a uniform magnetic field show that torque experienced by it is $\overline{T} = \overline{m} \times \overline{B}$.
 - b) A current of 10 A flows in each of two conducting wires parallel to each other. The separation between the wires is 2 cm. Find the force per unit length of one of the wires.
- 7. Derive an expression for mutual inductance between a straight long wire and a square loop wire in the same plane.
- a) Explain poynting theorem and poynting vector.
 - b) Starting from Faraday's law of electromagnetic induction, derive $\nabla \times E = -\frac{\partial B}{\partial t}$.