

www.FirstRanker.com

www.FirstRanker.com

Cod	e No: R32045		Set No: 1		
III B.Tech. II Semester Supplementary Examinations, January -2014 VLSI DESIGN					
(Common to Electronics and Communication Engineering & Electronics and Computer Engineering & Electronics and Instrumentation Engineering)					
Tim	Answer any FIVE Quest All Questions carry equal	tions marks	ax Marks: 75		
1.	(a) Explain how the transistors are integrated on Law?(b) Explain the fabrication steps for NMOS Technology	a single chip accordi nology with neat diagra	ng to Moore's ams. [5+10]		
2.	Define the following terms: (i) Threshold voltage (ii) Body effect (iii) Fi	gure of merit	[5+5+5]		
3.	 3. (a) Explain the Transistor design rules for nMOS, pMOS and CMOS technologies. (b) Design and Draw the Layout of CMOS Inverter gate and explain its working. 				
4.	 (a) Consider the metal wire segment of length capacitance to substrate if the relative capacitance v (b) Draw the model for derivation of delay unit at (c) Derive the equation for fall time of CMOS inv 	20 λ and width of 3 λ . value is 0.075 $\Box C_g$. nd explain. verter.	[5+5+5]		
5.	 (a) How to scale the following parameters: (i) power-speed product (ii) power dissipation per (iv) Carrier density in channel (b) What are the various limits due to sub threshold 	gate (iii) Switching e d currents?	nergy per gate [8+7]		
6.	(a) Compare PLAs and PALs with suitable examp (b) What is FPGA and how these are used in VLS	oles. I Design.	[7+8]		
7.	(a) What are the different styles or models of syntax.(b) How packages are different from libraries in	VHDL explain them VHDL?	with suitable [10+5]		
8.	 (a) How VHDL is used to get a logic level sir (b) Write a VHDL program for a ripple counter a 	nulation? nd also write its test b	ench program. [7+8]		

1 of 1

www.FirstRanker.com

R10

Max Marks: 75

Code No: R32045

III B.Tech. II Semester Supplementary Examinations, January -2014 VLSI DESIGN

(Common to Electronics and Communication Engineering & Electronics and Computer Engineering & Electronics and Instrumentation Engineering)

Time: 3 Hours

Answer any FIVE Questions

All Questions carry equal marks

- (a) Explain the various fabrication steps for CMOS technology with neat diagrams.
 (b) Compare speed and power performance of available technologies. [10+5]
- 2. (a) What is Threshold voltage and derive its expression.
 (b) Derive the relation between pull-up and pull-down ratio for an nMOS inverter driven by another nMOS inverter. [7+8]
- 3. (a) Explain the design rules for p-well CMOS process.
 (b) Design and Draw the Layout of a 1-bit CMOS Shift Register and explain its shifting operation. [7+8]
- 4. (a) Find the sheet resistance of the following wire segment. All the measurements are in λ . 10 [5+5+5]

- (b) Find the inverter pair delay for 4:1 ration nMOS inverter.
- (c) Draw the rise time model and find the equation for rise time of CMOS inverter.
- 5. (a) How to scale the following parameters: [8+7]
 (i) Maximum operating frequency (ii) Saturated current (iii) Channel resistance (iv) Power dissipation

(b) What are the different effect of scaling on interconnect and contact resistances?

- 6. (a) Implement the following function with PALs.
 F= AC+AB'+B'C
 (b) Draw the basic architecture of FPGA and explain why these are called Field Programmable. [8+7]
- 7. (a) Compare the VHDL and Verilog HDL.(b) What are the different basic elements in VHDL and explain them. [7+8]
- 8. (a) How the VHDL logic synthesizer is used to verify logical operation of any given circuit?

(b) Write a VHDL program to find number of ones in a given input and write its synthesis report . [7+8]

***** 1 of 1

www.FirstRanker.com

www.FirstRanker.com

Cod	e No: R32045	Set No: 3		
III B.Tech. II Semester Supplementary Examinations, January -2014 VLSI DESIGN				
(Common to Electronics and Communication Engineering & Electronics and Computer Engineering & Electronics and Instrumentation Engineering)				
Tim	e: 3 Hours N Answer any FIVE Questions All Questions carry equal marks *****	lax Marks: 75		
1.	(a) Explain the various fabrication steps for pMOS technology with ne(b) Discuss the Microelectronics evolutionary process with examples.	at diagrams. [10+5]		
2.	(a) Draw the $I_{ds}\text{-}V_{ds}$ characteristics and derive the relation between I_{ds} a (b) Derive the relation between pull-up and pull-down ratio for an driven through one or more pass transistors.	nd W/L ratio. nMOS inverter [7+8]		
3.	(a) Explain the design rules for wires and contacts.(b) Design and Draw the Layout of CMOS NOR gate and explain its v	[8+7] vorking.		
4.	Explain the following with suitable examples: (a) Sheet resistance (b) Inverter delays (c) Propagation delays	[5+5+5]		
5.	(a) What are the different scaling factors for device parameters and experiment.(b) What are the limitations on miniaturizing the size of transistor?	plain how scale [10+5]		
6.	 (a) Implement the following function using PLAs F= abc' +ab'c +ac' (b) Compare CPLDs and FPGAs in terms of architecture and application 	ns. [8+7]		
7.	(a) How the variables and constants are assigned in VHDL?(b) What is mean by configuration bonding? How it is done in VHDL?	? [7+8]		
8.	 (a) What are the different constraints can be provide using VHD analysis? (b) Write a VHDL program for a full adder and also write its test bence ***** 	L in synthesis ch? [7+8]		

1 of 1

www.FirstRanker.com

ſ

www.FirstRanker.com

ſ

٦

Cod	e No: R32045	Set No: 4		
III B.Tech. II Semester Supplementary Examinations, January -2014 VLSI DESIGN				
(Common to Electronics and Communication Engineering & Electronics and Computer Engineering & Electronics and Instrumentation Engineering)				
Time: 3 HoursMax Marks: 75				
	Answer any FIVE Questions All Questions carry equal marks ****			
1.	(a) Explain the fabrication steps of twin-tub process for CMOS technologies	gy.		
	(b) compare Dictivios and civios definitioningles.	[10+3]		
2.	2. (a) Draw the structure of nMOS transistor and explain how I_{ds} is depends on W/L ratio.			
	(b) What is Latchup in CMOS circuits? How to overcome it?	[8+7]		
3.	(a) What are the Lambda-based design rules? Give some examples.(b) Design and Draw the Layout of CMOS NAND gate and explain its	[8+7] working.		
4.	(a) How do you estimate the rise-time and fall-time of CMOS inverter?(b) Explain how to drive a large capacitive loads?	[8+7]		
5.	 (a) How to scale the following parameters: (i) Gate capacitance (ii) parasitic capacitance (iii) Channel resistance (iv) (b) Explain the effects of Substrate doping on Scaling. 	gate delay [8+7]		
6.	(a) Compare full custom and semicustom Design approaches with example (b) What is CPLDs? How these are used in VLSI designing?	ples. [8+7]		
7.	(a) What are the different design units in VHDL and explain them with suitable syntax.			
	(b) How sequential statement are write in VHDL? Give some example.	[8+7]		
8.	(a) How simulation and synthesis are obtained by VHDL?(b) Write a VHDL programme for a Decade counter.	[7+8]		
