www.FirstRanker.com

www.FirstRanker.com

R10

Set No: 1

Code No: R32045

III B.Tech. II Semester Regular/Supplementary Examinations, May/June -2014 **VLSI DESIGN**

(Comm to Electronics and Communication Engineering & Electronics and Computer Engineering & Electronics and Instrumentation Engineering)

Time: 3 Hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. With neat diagrams, explain the different steps in n-well fabrication of CMOS transistors. [15]
- 2. a) Derive the expression for the threshold voltage of MOSFET.
 - b) Explain the latch-up phenomenon in CMOS circuits and the methods by which that can be eliminated. [7+8]
- 3. a) Explain the color code used for drawing stick diagram for NMOS and PMOS designs.
 - b) What are the different types of contact cuts made during the fabrication of an IC? Which one is commonly used and why?
 - c) Draw the stick diagram for CMOS inverter.

[15]

- 4. Describe three sources of writing capacitances. Explain the effect of writing capacitance on the performance of a VLSI circuit [15]
- 5. a) Explain about scaling models and scaling factors.

[7+8]

- b) Explain different series and parallel combinations of push-up and pull-down networks
- 6. a) Compare CPLD and FPGA.
 - b) Explain the methods of programming of PAL CMOS device.

[8+7]

- 7. a) What are the different data types available in VHDL and how they are indicated?
 - b) Write VHDL program for a 4-bit counter with asynchronous reset.

[7+8]

- 8. a) How simulation is a very powerful technique in verifying a chip's timing characteristics?
 - b) How random test generation is used for verification?

[7+8]

www.FirstRanker.com

R10

Set No: 2

Code No: R32045

III B.Tech. II Semester Regular/Supplementary Examinations, May/June -2014 **VLSI DESIGN**

(Comm to Electronics and Communication Engineering & Electronics and Computer Engineering & Electronics and Instrumentation Engineering)

Time: 3 Hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

1. a) Explain the process of thermal diffusion.

[4+4+7]

- b) Compare wet and dry oxidation processes.
- c) What are the basic steps in n-MOS fabrication process? Explain them with diagrams.
- 2. a) Derive the expression for transit time for electron or hole.
 - b) Explain channel length modulation and its importance.

[7+8]

- 3. a) Design stick diagram for the function F = (A+B)(C+D).
 - b) Design CMOS layout for the function $Y = (A.B+C+D)^{1}$.

[8+7]

- 4. a) Derive the propagation delay τ_{PHL} for inverter.
 - b) Draw the circuit diagram of complementary pass logic implementation of NAND/AND gate and explain its working. [7+8]
- 5. a) Explain how the transistor might be sized to optimize the delay through the carry stage in parallel adder.
 - b) Design a two input XOR gate using a ROM.

[8+7]

- 6. a) Differentiate between PROM, PAL and PLA.
 - b) Implement a 3 bit synchronous counter using PAL.

[7+8]

- 7. a) Explain how a FSM model is described in VHDL with suitable program.
 - b) What is the difference between design capture tools and design verification tools? Give some examples of each. [7+8]
- 8. a) How simulation is a very powerful technique in verifying a chip's timing characteristics?
 - b) How random test generation is used for verification?

[8+7]

R10

Set No: 3

[8+7]

Code No: R32045

III B.Tech. II Semester Regular/Supplementary Examinations, May/June -2014 **VLSI DESIGN**

(Comm to Electronics and Communication Engineering & Electronics and Computer Engineering & Electronics and Instrumentation Engineering)

Time: 3 Hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

- 1. a) Discuss fabrication differences between NMOS and CMOS technologies. Which fabrication is preferred and why?
 - b) Design the NMOS inverter circuit and explain its operation. [7+8]
- 2. a) With neat sketches explain the formation of the inversion layer in P-channel Enhancement MOSFET.
 - b) Derive the expression for drain current of a CMOS transistor. [8+7]
- 3. a) What are the effects of constant voltage scaling on the current and power?
 - b) What are the different design rules for wires and contacts? [7+8]
- 4. a) Explain how MOSFETs can be used as switches.
 - b) What is inverter delay? How delay is calculated for multiple stages? [7+8]
- 5. a) Explain the Barrel Shifter operation with its circuit diagram.
 - b) Explain the operation of zero/one detector.
- 6. a) Draw the circuit diagram of six transistor SRAM cell and explain its working.
 - b) Draw and explain the structure of an n-MOS ROM. [8+7]
- 7. a) Design logic diagram using PLA for the function

 $f = \Sigma m (0,1,3,5,7,11,14) + \Sigma \varphi (2,6) diagram.$

- b) Explain look up table (LUT) of FPGA with circuit diagram. [8+7]
- 8. Write short notes on following:
 - (a) Technology Libraries.
 - (b) post layout timing simulation.
 - (c) Static timing. [5+5+5]

www.FirstRanker.com

www.FirstRanker.com

R10

Set No: 4

Code No: R32045

III B.Tech. II Semester Regular/Supplementary Examinations, May/June -2014 **VLSI DESIGN**

(Comm to Electronics and Communication Engineering & Electronics and Computer Engineering & Electronics and Instrumentation Engineering)

Time: 3 Hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

1.	a) Distinguish between bipolar, n-MOS and CMOS transistor technologies.b) Explain the various steps in PMOS fabrication.	[8+7]
2.	a) Derive the expression for drain current of a CMOS transistor.b) Explain the working of a BiCMOS transistor.	[8+7]
3.	Design a stick diagram for two input CMOS NAND and NOR gates.	[15]
4.	a) Explain different types of capacitor loads for MOS transistors.b) Explain timing optimization with examples in VLSI design flow.	[7+8]
5.	With neat circuit diagram, explain the operation of (a) Carry look ahead adder (b) Barrel shifter.	[7+8]
6.	a) Explain about CPLD architecture and its applications.b) Implement a full subtractor by using PLA.	[8+7]
7.	With respect to synthesis process explain the following: (a) Flattering(b) Factoring(c) Mapping.	[15]
8.	 a) Discuss different constraints of synthesis tools. b) Explain floor planning, place and route in detail. ***** 	[5+10]

1 of 1