

www.FirstRanker.com

www.FirstRanker.com

R10

[15]

IV B.Tech II Semester Regular Examinations, April/May - 2014 ADVANCED STRUCTURAL ANALYSIS

(Civil Engineering) Time : 3 hours Max. Marks: 75 **Answer any Five Questions** All Questions carry equal marks ***** 1 Derive Equilibrium Equations for a 2 Dimensional State of Stress? [15] 2 What is Plane strain & Plane stress problems? Explain with an example and derive appropriate equations for the above problems? [15] For the stress function $\Phi = -(F/d^3) \times XZ^2(3d-2Z)$, determine the stress 3 components and sketch their variations in a region included in Z = 0, Z = d, X = 0, on the side X-positive [15] Derive Equilibrium & Compatibility equations for a body in Polar co-ordinate 4 system? [15] 5 Derive the equation of motion for an damped free vibration of motion for Single degree of Freedom (SDOF) from first principles. Write the equations for maximum displacement amplitude [15] A mass of 7 kg is attached to a spring with a stiffness of 4 N/mm. Determine 6 a) the critical damping coefficient. [8] Derive the expression for the dynamic displacement of an SDOF system for b) the un damped free vibrations. Sketch the response. [7] A SDOF system is subjected to a harmonic loading defined by $P(t) = P_0 Sin$ 7 ωt. Derive the expression for the dynamic displacement for the under damped [15] vibrations. Sketch the response 8 Discuss about the response of a system under general loading using Duhamel

1 of 1

integral

www.FirstRanker.com

www.FirstRanker.com

IV B.Tech II Semester Regular Examinations, April/May - 2014 ADVANCED STRUCTURAL ANALYSIS

(Civil Engineering) Time : 3 hours Max. Marks: 75 **Answer any Five Questions** All Questions carry equal marks ***** Derive the compatibility equations for a 2 Dimensional state of strain? 1 [15] 2 Derive [C] which relates stress & strain, for plane stress & plane strain problems? [15] 3 For the following stress function $\Phi = -(H/\Pi) Z \tan^{-1}(X/Z)$ Determine the stress components σ_{xx} , σ_{yy} and τ_{xz} [15] 4 Derive Compatibility & boundary condition for a body in Polar Co-ordinate system? [15] 5 a) Discuss the differences between the Free vibration and the forced vibration [7] Derive the equations of motion for an undamped free vibration using b) i) Simple harmonic motion ii) Newton's second law [8] The successive amplitude from afree vibration test for a structure are 0.69, 6 0.632, 0.1&0.099 units respectively. Determine the damping ratios of the system, considering each cycle separately and considering them all together [15] A SDOF system is subjected to a harmonic loading defined by $P(t) = P_0 \sin \omega t$. 7 Derive the expression for the dynamic displacement for the under damped [15] vibrations. Sketch the response. 8 Discuss about the response of a damped system for an impulsive load by using Duhamel integral. [15]

1 of 1

www.FirstRanker.com

www.FirstRanker.com

R10

Set No. 3

IV B.Tech II Semester Regular Examinations, April/May - 2014 ADVANCED STRUCTURAL ANALYSIS

(Civil Engineering)

T: 21

Гime : 3 hours Max. N			larks: 75	
		Answer any Five Questions		
		All Questions carry equal marks *****		
1		The state of stress is at a point is given by		
		σ_{xx} =10 , τ_{xy} = -20		
		$\sigma_{_{YY}}$ =20 , $\tau_{_{YZ}}$ = 10		
		$\sigma_{zz} = -10$, $\tau_{zx} = -30$ Determine direction cosines of the Principal stresses?	[15]	
2		Derive Equilibrium Equations for a 3 Dimensional State of Stress	[15]	
3		For the stress function $\Phi = -(F/d^3) \times X Z^2(3d-2Z)$, Determine the stress components and sketch their variations in a region included in $Z = 0$, $Z = d$, $X = 0$	[15]	
		,on the side x-positive.	[15]	
4		Derive Equilibrium & Compatibility equations for a body in Polar co-ordinate system?	[15]	
5	a)	Discuss the differences between the Free vibration and the forced vibration	[7]	
	b)	Derive the equations of motion for an undamped free vibration using i) D'Alembert's principle ii) Newton's second law	[8]	
		N.		
6	a)	A water tank of weight 150 KN is supported by 4 columns built in at ends, each column has $EI=2x10^6$ KN/m ² .calculate the period of vibration of the tank in its horizontal direction. Neglecting the distributed mass of the		
		columns.	[7]	
	b)	Find the frequency of oscillation for the floating pole of the cross section area A having a mass M at one end and the density of the pole is ρ .	[8]	
7		A SDOF system is subjected to a harmonic loading defined by $P(t) = P_0 Sin \omega t$.		
		Derive the expression for the dynamic displacement for the under damped vibrations. Sketch the response.	[15]	
0				

Discuss about the response of a system under general loading using Duhamel 8 integral. [15]

Time : 3 hours

www.FirstRanker.com

www.FirstRanker.com

R10

Set No. 4

IV B.Tech II Semester Regular Examinations, April/May - 2014 ADVANCED STRUCTURAL ANALYSIS

(Civil Engineering)

Max. Marks: 75

Answer any Five Questions

All Questions carry equal marks

1	The state of stress at a point is given by $\sigma_{xx} = 10$, $\tau_{XY} = 8$ $\sigma_{YY} = -6$, $\tau_{YZ} = 0$ $\sigma_{TZ} = 4$, $\tau_{TX} = 0$	
	Consider another set of Co-ordinate axis X^1 , Y^1 , Z^1 in which Z^1 coincides with Z-axis and X^1 is rotated by 30^0 anti clock wise from the X axis. Determine the stress components in the new system?	[15]
2	Derive Equilibrium Equations for a 3 Dimensional State of Stress	[15]
3	Check whether the system of strains is possible for the following strains? $C_{XX} = 5 + X^2 + Y^2 + X^4 + Y^4$ $C_{YY} = 6 + 3X^2 + 3Y^2 + X^4 + Y^4$ $v_{XY} = 10 + 4XY (X^2 + Y^2 + 2)$	[15]
4	Derive Compatibility & boundary condition for a body in Polar Co-ordinate system?	[15]
5 a)	Discuss the differences between the Free vibration and the forced vibration	[7]
b)	Derive the equations of motion for an undamped free vibration using i) D'Alembert's principle ii) Newton's second law	[8]
6 a) b)	A mass of 6 kg is attached to a spring with a stiffness of 3.5 N/mm. Determine the critical damping coefficient. Derive the expression for the dynamic displacement of an SDOF system for the undamped free vibrations. Sketch the response	[7]
7	A SDOF system is subjected to a harmonic loading defined by $P(t) = P_0 Sin \omega t$. Derive the expression for the dynamic displacement for the under damped vibrations. Sketch the response	[0]
8	Discuss about the response of a damped system for an impulsive load by using Duhamel integral.	[15]

1 of 1