

Code No: **R42021**

www.FirstRanker.com

www.FirstRanker.com

R10

IV B.Tech II Semester Regular Examinations, April/May - 2014								
DIGITAL CONTROL SYSTEMS								
(Electrical and Electronics Engineering)								
Time : 3 hoursMax. Marks: 7								
	Answer any Five Questions							
All Questions carry equal marks								

1	a) b)	Explain about the shifting and scaling operator. Discuss briefly about the linear time invariant and causal systems.	[8] [7]					
2	a) b)	Write the mapping points between S-Plane and Z-plane. Find the z-transform of (i) unit step (ii) $f(t)=t e^{-at}$	[7] [8]					
3	a) b)	Explain about the weighted resistor 3 bit D/A converter? Explain any examples of data control systems?	[7] [8]					
4	a)	What are the methods for computation of state transition matrix. Explain any one method?	[7]					
	b)	A discrete time system is described by the differential equation $y(k + 2) + 5y(k + 1) + 6y(k) = 4U(k)$ assuming initial conditions are $y(0) = 1$, $y(1) = 0$, T = 1 sec. Find the state transition matrix.	[8]					
	a) b)	Explain the Duality between controllability and observability. Consider that a digital control system is described by the state equation. x(k + 1) = Ax(k) + Bu(k) Where $A = \begin{bmatrix} 1 & -2 & 0 \\ 3 & 2 & 1 \\ -1 & 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$, Determine the controllability of the system. Explain the following mapping between the S-Plane and the Z-Plane.	[7] [8]					
6	a)	Explain the following mapping between the S-Plane and the Z-Plane. (i) Primary strips and complementary Strips (ii) Constant frequency loci (iii) Constant damping ratio loci	[12]					
	b)	Explain the stability conditions of closed loop systems in the Z over in the S- plane.	[3]					
7	a) b)	Write the transient response specifications? Explain the design procedure in the w-plane?	[7] [8]					
8	a)	Discuss the necessary conditions for design of state feedback controller through pole placement?	[10]					
	b)	Explain about the state observers?	[5]					

1 of 1

Code No: **R42021**

www.FirstRanker.com

www.FirstRanker.com

Set No. 2

Max. Marks: 75

IV B.Tech II Semester Regular Examinations, April/May - 2014 DIGITAL CONTROL SYSTEMS (Electrical and Electronics Engineering)

Time : 3 hours

Answer any Five Questions All Questions carry equal marks *****

1	***** Explain in detail about the periodic and nonperiodic signals with a neat sketch?	[15]
2 a)	Solve the following difference equation $y(k+2) + 3y(k+1) + 2y(k) = 0; y(-1) = -\frac{1}{2}, y(-2) = \frac{3}{4}$	[5]
b) c)	Obtain the z transform of $f(t) = e^{-at}$ Find the inverse z-transform of $F(Z) = \frac{1}{Z(Z=0.2)}$	[5] [5]
3 a) b)	State and prove the sampling theorem?Derive transfer functions for the following data hold circuits.(i) Zero order hold circuit (ii) First order hold circuit	[7] [8]
4 a) b)	Write the controllable and diagonal canonical forms? Consider a discrete linear data control system, whose input-output relation is described by the difference equation $y(k + 2) + 2y(k + 1) + y(k) = u(k)$ initial conditions are $x(0) = 0$ and $x(1) = 1$. Test the state controllable and observable canonical forms?	[7] [8]
5 a) b)	Explain the concepts of controllability and observability. Investigate the controllability and observability of the digital system. $x(k+1) = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \text{ and } y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(k)$	[7] [8]
6 a)	List the difference between the Jury stability test and stability analysis using bilinear transformation coupled with routh stability criterion?	[7]
b)		[8]
	Determine the range of K for stability by use of the Jury stability test.	
7 a)	Discuss about the response of a linear time invariant discrete time system to a sinusoidal input?	[7]
b)	Consider the system defined by $x(kT) = u(kT) + ax((k-1)T)$, $0 < a < 1$ Where u(kT) is the input and x(kT) the output. Obtain the steady state output x(kT), when the input u(kT) is the sampled sinusoidal.	[8]
8	Derive the necessary and sufficient conditions for design of state feedback controller through pole placement?	[15]

1 of 1

www.FirstRanker.com

www.FirstRanker.com

Code No: **R42021**

IV B.Tech II Semester Regular Examinations, April/May - 2014

- DIGITAL CONTROL SYSTEMS
- (Electrical and Electronics Engineering)

Time : 3 hours

Max. Marks: 75

Answer any Five Questions All Questions carry equal marks

1		Discuss in detail about the continuous and discrete time signals with neat sketches?	[15]				
2	a)	Obtain the Z-transform of the following	[8]				
	b)	(i) $x(t) = \frac{1}{a}(1 - e^{-at})$ (ii) $x(t) = t^2 e^{-at}$ where 'a' is constant Consider $x(z)$ where $x(z) = \frac{2z^3 + z}{(z-2)^2(z-1)}$ obtain the inverse Z-transform of $x(z)$.	[7]				
3	a)	What are the various types of analog to digital converters? Explain successive approximation type analog to digital converters with neat schematic diagram?	[8]				
	b)	Describe the sample and hold operations?	[7]				
4	a) b)	Write the state transition matrix and its properties? Obtain the state transition matrix of the following discrete time system x(k + 1) = Gx(k) + Hu(k) y(k) = Cx(k) Where $G = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix}, H = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ Explain the test for controllability and observability.	[7] [8]				
5	a) b)	Explain the test for controllability and observability. Given the system x (k+1)=Ax (k)+Bu(k) y(k)=c x(k) Where $A = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$ Determine the state controllability of the system.	[7] [8]				
6	a) b)	State and explain the jury stability test. Using Jury's stability criterion find the range of K, for which the characteristic equation $z^3 + Kz^2 + 1.5Kz - (K + 1) = 0$ is closed loop stable.	[8] [7]				
7	a) b)	Explain the relation between the bilinear transformation and the w plane? Discuss the review of phase lag, lead and lag-lead compensator?	[7] [8]				
8	a)	Explain the sufficient conditions for design of state feedback controller through	[7]				
	b)	pole placement? Derive the ackerman's formula?	[8]				

1 of 1

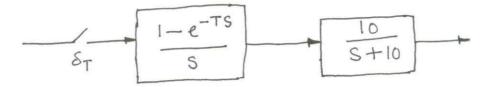
Code No: **R42021**

www.FirstRanker.com

www.FirstRanker.com

Set No. 4

IV B.Tech II Semester Regular Examinations, April/May - 2014								
		DIGITAL CONTROL SYSTEMS						
(Electrical and Electronics Engineering)								
Time : 3 hoursMax. Marks: 75								
		Answer any Five Questions						
		All Questions carry equal marks						
1		****	501					
1		Explain about the discrete time signals with a neat sketch? Describe about the nonperiodic signals with a neat sketch?	[8] [7]					
	0)	Deserve about the nonperiodic signals with a heat sketch?	[/]					
2	a)	State and prove the following Z-Transform theorems	[7]					
	b)	(i) Shifting theorem (left & right) (ii) Initial value theorem						
		(iii) Final value theorem Find the 7 transform of the following	[8]					
	b)	Find the Z-transform of the following (i) $f(t) = e^{-at} \sin \omega t$ (ii) $f(s) = \frac{4}{s^2(s+2)}$	[0]					
		(i) $f(t) = e^{-sm\omega t}$ (ii) $f(s) = \frac{1}{s^2(s+2)}$						
3	a)	What are the advantages of sampling process in control systems?	[5]					
-	b)	Explain any two types of digital to analog converters with a neat circuit?	[10]					
4		What are the state space representation forms and explain them.	[8]					
	b)	Consider the following system. $\frac{Y(z)}{U(Z)} = \frac{Z+1}{Z^2+1.3Z+0.4}$	[7]					
		$\overline{U(Z)} = \overline{Z^2 + 1.3Z + 0.4}$						
		Obtain the state space representation forms of controllable and observable canonical forms.						
		canonical forms.						
5	a)	Derive the necessary condition for the digital control system	[7]					
		X(K+1) = AX(K) + Bu(K)						
	h)	C(k) = DX(K) to be observable. Examine whether the discrete data system	[8]					
	0)	$\frac{1}{2} \left[\begin{pmatrix} k \\ k \end{pmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right]_{x(k)} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{x(k)}$	[0]					
		$x(k+1) = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u(k)$						
		$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k)$ Is (i) state controllable (ii) output controllable and (iii) observable.						
6	a)	Discuss the stability analysis of discrete control system using (i) Routh stability	[7]					
	b)	criteria (ii) Bilinear transformation	гот					
	b)	Using Jury's stability criterion, determine the stability of the following discrete time systems	[8]					
		(i) $z^3 + 3.3z^2 + 4z + 0.8 = 0$ (ii) $z^3 - 1.1z^2 - 0.1z + 0.2 = 0$						
		1 of 2						



www.FirstRanker.com

www.FirstRanker.com

R10

- Code No: **R42021**
- ⁷ a) Explain about the digital PID controllers with neat sketch?
 - b) Consider the transfer function system shown. The sampling period T is assumed to be 0.1 sec. obtain G(w).

- 8 a) Explain the concept of state feedback controllers? [5]
 - b) Consider the system x(k + 1) = Gx(k) + Hu(k)

$$G = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix}, H = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Determine a suitable state feedback gain matrix 'k' such that the system will have the closed loop poles at $z = 0.5 \pm j0.5$

[10]

[5]

[10]

