

Set No. 1

I B.Tech I Semester Supplementary Examinations, Aug. 2015 MATHEMATICS-I

(Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Solve $(3x^2y^2 + x^2) dx + (2x^3y + y^2) dy = 0$
 - (b) If the temperature of a body changes from 100^{0} C to 70^{0} C in 15 minutes, find when the temperature of the body will be 40^{0} C, given that the temperature of the surroundings is 30^{0} C [7+8]
- 2. (a) Solve $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 9y = e^x + e^{3x}$ (b) Solve $(D^2 + 16)y = 0$ [8+7]
- 3. (a) Find the maximum of $\frac{15xyz}{4x+2y+4z}$ given that xyz=8. (b) Find the maximum of x^3y^2z given that x+3y+4z=10. [8+7]
- 4. (a) Trace the curve y = (x-2)(x+3)(x-4).. (b) Trace the curve y = (x-2)(x+3)(x-4).. [8+7]
- 5. (a) Find the surface of the solid generated by the revolution of cardioid $r=a (1-\cos\theta)$ about the initial line.
 - (b) Find the surface of the solid generated by the revolution of the ellipse $x^2 + 4y^2 = 16$ about its Major axis . [8+7]
- 6. (a) Evaluate $\int \int r dr d\theta$ over the region bounded by the cardioid $r=a(1+\cos\theta)$ and out side the circle r=a.
 - (b) Change the order of Integration & evaluate $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$ [8+7]
- 7. (a) Find the angle of intersection of the spheres $x^2 + y^2 + z^2 = 4$ and $z = x^2 + y^2 + 3$ at the point (2,-1,1).
 - (b) Prove that div grad $r^n = n(n+1)r^{n-2}$. [8+7]
- 8. (a) If s is surface of sphere with two units radius then show that $\int_S r.N \ ds = 32\pi$ (b) Evaluate $\int_c f.dr$ where $f = 3x^2 i + (2xz-y) j + z k$ along the straight line C from (0,0,0) to (2,1,3). [8+7]

Set No. 2

I B.Tech I Semester Supplementary Examinations, Aug. MATHEMATICS-I

(Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Solve $(x^2y^3 + xy) \frac{dy}{dx} = 1$
 - (b) Find the orthogonal trajectory of the family of curves $r = a (1 + Sin \theta)$, where 'a' is a parameter [8+7]
- 2. (a) Solve $(D^2 3D + 2)y = e^x$ (b) Solve $(D^4 - a^4) y = 0$ [8+7]
- 3. (a) If $U = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, P.T. $x^2 \frac{\partial f}{\partial x} + y^2 \frac{\partial f}{\partial y} + z^2 \frac{\partial f}{\partial z} = 0$. (b) Expand $u = x^y$ in powers of (x-1) and (y-1) up to third degree terms.
 - [8+7]
- 4. (a) Trace the curve $r = a (1 + \cos 2\theta)$. (b) Trace the curve $r = 3 + 2 \cos\theta$.

[8+7]

- 5. (a) Find the length of the arc of the semi-cubical parabola $ay^2 = x^3$ from the vertex to the ordinate x=5a.
 - (b) Find the area of the surface of revolution generated by revolving one arc of the curve y=sinx about the x-axis.
- (a) Evaluate $\int \int \int_{\mathcal{C}} dx dy dz$ where V is the finite region of space formed by the planes x=0, y=0, z=0 and 2x+3y+4z=12.
 - (b) Evaluate $\int \int_R y \, dxdy$ where R is the region bounded by the Parabolas $y^2 = 4x$ and $x^2 = 4y$. [8+7]
- (a) Prove that $\nabla \times \{f(r)\overline{r}\} = 0$
 - (b) Find a unit vector which is perpendicular to the surface of the paraboloid of revolution $z = x^2 + y^2$ at the point (1,2,5). [8+7]
- 8. (a) If f = y i + z j + x k, find the circulation of f round the curve C, where c is the circle $x^2 + y^2 = 0$, z = 0.
 - (b) If $f = (x + y^2)i 2xj + 2yzk$, evaluate $\int_s f N ds$ where S is the surface of the plane 2x + y + 2z = 6 in the first octant. [8+7]

Set No. 3

I B.Tech I Semester Supplementary Examinations, Aug. MATHEMATICS-I

(Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Solve $\frac{dy}{dx} + y \operatorname{Sec} x = \tan x$
 - (b) Find the orthogonal trajectory of the family of curves $x^2 + y^2 = 2 a x$, where 'a' is a parameter [8+7]
- 2. (a) Solve $y^{11} 6y^1 + 25y = e^{2x} + x + \sin x$ (b) Solve $y^{111} - 3y^{11} + 4y = 0, y(0) = 1, y^{1}(0) = -8, y^{11}(0) = -4$
- 3. (a) Show that $U = x^2 e^{-y} \cosh z$, $V = x^2 e^{-y} \sinh z$, $w = x^2 + y^2 + z^2 xy yz zx$ are functionally dependent.
 - (b) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. If dependent find the relationship between them. [8+7]
- 4. (a) Trace the curve $x^2 + y^2 = xy$. (b) Trace the curve $y^2 (2a x) = x^3$.

[8+7]

- (a) Find the surface area generated by rotating the arc of the catenary $y=a \cosh \theta$ $\frac{x}{a}$ from x=0 to a about the x-axis.
 - (b) Find the volume of the solid generated by revolving about the x-axis of the loop of the curve $y^2 = x^2 \frac{(a+x)}{a-x}$. [8+7]
- 6. (a) Evaluate $\int_0^1 \int_0^{1-z} \int_0^{1-y-z} xyz \, dxdydz$.
 - (b) Evaluate $\iint \int (x+y+z)dxdydz$ taken over the volume bounded by the planes x = 0, x = 1; y = 0, y = 1; and z = 0, z = 1.
- (a) Find the unit normal vector to the level surfaces $x^2y + 2xz = 4$ at the point (2,-2,3)
 - (b) Find the directional derivative of the function $xy^2 + yz^2 + zx^2$ along the tangent to the curve x = t, $y = t^2$, z = t at the point (1,1,1)
- 8. Verify divergence theorem for 2x²yi-y²j+4xz²k taken over the region of first octant of the cylinder $y^2+z^2=9$ and x=2. [15]

Set No. 4

I B.Tech I Semester Supplementary Examinations, Aug. 2015 MATHEMATICS-I

(Common to Civil Engineering, Electrical & Electronics Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Solve $(x^2 + y^3 + 6x) dx + (y^2x) dy = 0$
 - (b) If the population of a country doubles in 50 years, in how many years will it triple, assuming that the rate of increase is proportional to the number of inhabitants? [8+7]
- 2. (a) Solve $\frac{d^2y}{dx^2} + y = 0$ given that y(0) = 2, $y\left(\frac{\pi}{2}\right) = -2$ (b) Solve $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 9y = 5e^{2x}$ [8+7]
- 3. (a) If $x = e^r \cos \theta$, $y = e^r \tan \theta$, show that $J\left(\frac{x,y}{r,\theta}\right) J\left(\frac{r,\theta}{x,y}\right) = 1$. (b) Find Taylor's series expansion of the $f(x,y) = \sin 2x$ about $x = \frac{\pi}{4}$. [8+7]
- 4. (a) Trace the curve $r = 4\theta$.
 - (b) Trace the curve $r = \frac{1}{4} + 2\sin\theta$. [8+7]
- 5. (a) Find the surface of the solid generated by revolution of the lemniscate $r^2 = a^2 \cos^2 \theta$ about the initial line.
 - (b) Show that the whole length of the curve $x^2(a^2 x^2) = 8a^2y^2$ is $\pi a\sqrt{2}$. [8+7]
- 6. (a) Evaluate $\int \int (x+y)^2 dx$ dy.over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (b) Transform the following to Cartesian form and hence evaluate $\int_0^{\pi} \int_0^a r^3 \sin\theta dr d\theta$.
- 7. (a) Prove that $\nabla \cdot \left\{ r \nabla \left(\frac{1}{r^3} \right) \right\} = \frac{3}{r^4}$.
 - (b) Find the directional derivative of $\Phi(x,y,z) = x^2yz + 4xz^2$ at the point P = (1,-2,-1) in the directional of the normal to the surface $f(x,y,z) = x\log z y^2$ at (-1,2,1). [8+7]
- 8. (a) If f = y i + z j + x k, find the circulation of f round the curve C, where c is the circle $x^2 + y^2 = 0$, z = 0.
 - (b) If $f = (x + y^2)i 2xj + 2yzk$, evaluate $\int_s f.Nds$ where S is the surface of the plane 2x + y + 2z = 6 in the first octant. [8+7]
