Code No: R10102/R10

Set No. 1

I B.Tech I Semester $\begin{aligned} & \text { Supplementary Examinations, Aug. } 2015 \\ & \text { MATHEMATICS-I }\end{aligned}$
(Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Solve $\left(3 x^{2} y^{2}+x^{2}\right) d x+\left(2 x^{3} y+y^{2}\right) d y=0$
(b) If the temperature of a body changes from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 15 minutes, find when the temperature of the body will be $40^{\circ} \mathrm{C}$, given that the temperature of the surroundings is $30^{\circ} \mathrm{C}$
2. (a) Solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=e^{x}+e^{3 x}$
(b) Solve $\left(D^{2}+16\right) y=0$
3. (a) Find the maximum of $\frac{15 x y z}{4 x+2 y+4 z}$ given that $\mathrm{xyz}=8$.
(b) Find the maximum of $x^{3} y^{2} z$ given that $\mathrm{x}+3 \mathrm{y}+4 \mathrm{z}=10$.
4. (a) Trace the curvey $=(x-2)(x+3)(x-4)$..
(b) Trace the curve $\mathrm{r}=\frac{1}{2}-\sin \theta$.
5. (a) Find the surface of the solid generated by the revolution of cardioid $\mathrm{r}=\mathrm{a}(1-\cos \theta)$ about the initial line.
(b) Find the surface of the solid generated by the revolution of the ellipse $x^{2}+4 y^{2}=16$ about its Major axis .
6. (a) Evaluate $\iint r d r d \theta$ over the region bounded by the cardioid $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ and out side the circle $r=a$.
(b) Change the order of Integration \& evaluate $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} d y d x$
7. (a) Find the angle of intersection of the spheres $x^{2}+y^{2}+z^{2}=4$ and $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}+3$ at the point $(2,-1,1)$.
(b) Prove that div grad $\mathrm{r}^{n}=\mathrm{n}(\mathrm{n}+1) \mathrm{r}^{n-2}$.
8. (a) If s is surface of sphere with two units radius then show that $\int_{S} r \cdot N d s=32 \pi$
(b) Evaluate $\int_{c} f . d r$ where $\mathrm{f}=3 \mathrm{x}^{2} \mathrm{i}+(2 \mathrm{xz}-\mathrm{y}) \mathrm{j}+\mathrm{zk}$ along the straight line C from $(0,0,0)$ to $(2,1,3)$.
$[8+7]$

Code No: R10102/R10

Set No. 2

I B.Tech I Semester $\begin{aligned} & \text { Supplementary Examinations, Aug. } 2015 \\ & \text { MATHEMATICS-I }\end{aligned}$
(Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Solve $\left(x^{2} y^{3}+x y\right) \frac{d y}{d x}=1$
(b) Find the orthogonal trajectory of the family of curves $r=a(1+\operatorname{Sin} \theta)$, where ' a ' is a parameter
2. (a) Solve $\left(D^{2}-3 D+2\right) y=e^{x}$
(b) Solve $\left(D^{4}-a^{4}\right) y=0$
3. (a) If $\mathrm{U}=f\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$,P.T. $x^{2} \frac{\partial f}{\partial x}+y^{2} \frac{\partial f}{\partial y}+z^{2} \frac{\partial f}{\partial z} \approx 0$.
(b) Expand $u=x^{y}$ in powers of ($\mathrm{x}-1$) and (y-1) up to third degree terms. $[8+7]$
4. (a) Trace the curve $\mathrm{r}=\mathrm{a}(1+\cos 2 \theta)$.
(b) Trace the curve $\mathrm{r}=3+2 \cos \theta$.
5. (a) Find the length of the arc of the semi-cubical parabola $a y^{2}=x^{3}$ from the vertex to the ordinate $x=5 a$.
(b) Find the area of the surface of revolution generated by revolving one arc of the curve $\mathrm{y}=\sin \mathrm{x}$ about the x -axis .
6. (a) Evaluate $\iiint d x d y d z$ where V is the finite region of space formed by the planes $\mathrm{x}=0, \hat{\mathrm{y}}=0, z=0$ and $2 x+3 y+4 z=12$.
(b) Evaluate $\iint_{R} y$ dxdy where R is the region bounded by the Parabolas $y^{2}=4 x$ and $\mathrm{x}^{2}=4 y$.
7. (a) Prove that $\nabla \times\{\mathrm{f}(\mathrm{r}) \bar{r}\}=0$
(b) Find a unit vector which is perpendicular to the surface of the paraboloid of revolution $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$ at the point $(1,2,5)$.
8. (a) If $f=y i+z j+x k$, find the circulation of f round the curve C, where c is the circle $x^{2}+y^{2}=0, z=0$.
(b) If $\mathrm{f}=\left(\mathrm{x}+\mathrm{y}^{2}\right) \mathrm{i}-2 \mathrm{xj}+2 \mathrm{yzk}$, evaluate $\int_{s} f . N d s$ where S is the surface of the plane $2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=6$ in the first octant.
$[8+7]$

Code No: R10102/R10

Set No. 3

I B.Tech I Semester Supplementary Examinations, Aug. 2015 MATHEMATICS-I

(Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Solve $\frac{d y}{d x}+y \operatorname{Sec} x=\tan x$
(b) Find the orthogonal trajectory of the family of curves $x^{2}+y^{2}=2 a x$, where ' a ' is a parameter
2. (a) Solve $y^{11}-6 y^{1}+25 y=e^{2 x}+x+\operatorname{Sin} x$
(b) Solve $y^{111}-3 y^{11}+4 y=0, y(0)=1, y^{1}(0)=-8, y^{11}(0)=-4$
3. (a) Show that $\mathrm{U}=x^{2} e^{-y} \cosh z, \mathrm{~V}=x^{2} e^{-y} \sinh z, \mathrm{w}=x^{2}+y^{2}+z^{2}-x y-y z-z x$ are functionally dependent.
(b) Determine whether the functions $\mathrm{U}=\frac{x}{y+z}, \mathrm{~V}=\frac{y}{z-x}, \mathrm{~W}=\frac{z}{x-y}$ are dependent. If dependent find the relationship between them.
[8+7]
4. (a) Trace the curve $x^{2}+y^{2}=x y$.
(b) Trace the curve $y^{2}(2 a-x)=x^{3}$.
5. (a) Find the surface areagenerated by rotating the arc of the catenary $y=a \cosh$ $\frac{x}{a}$ from $\mathrm{x}=0$ to a about the x -axis.
(b) Find the volume of the solid generated by revolving about the x -axis of the loop of the curve $y^{2}=x^{2} \frac{(a+x)}{a-x}$.
6. (a) Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-y-z} x y z \operatorname{dxdyd} z$.
(b) Evaluate $\iiint(x+y+z) d x d y d z$ taken over the volume bounded by the planes $x=0, x=1 ; y=0, y=1 ;$ and $\mathrm{z}=0, \mathrm{z}=1$.
7. (a) Find the unit normal vector to the level surfaces $x^{2} y+2 x z=4$ at the point $(2,-2,3)$
(b) Find the directional derivative of the function $x^{2}+y z^{2}+\mathrm{zx}^{2}$ along the tangent to the curve $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}$ at the point $(1,1,1)$
8. Verify divergence theorem for $2 x^{2} y i-y^{2} j+4 x z^{2} k$ taken over the region of first octant of the cylinder $\mathrm{y}^{2}+\mathrm{z}^{2}=9$ and $\mathrm{x}=2$.

Code No: R10102/R10

Set No. 4

I B.Tech I Semester $\begin{aligned} & \text { Supplementary Examinations, Aug. } 2015 \\ & \text { MATHEMATICS-I }\end{aligned}$
(Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Solve $\left(x^{2}+y^{3}+6 x\right) d x+\left(y^{2} x\right) d y=0$
(b) If the population of a country doubles in 50 years, in how many years will it triple, assuming that the rate of increase is proportional to the number of inhabitants?
2. (a) Solve $\frac{d^{2} y}{d x^{2}}+y=0$ given that $y(0)=2, y\left(\frac{\pi}{2}\right)=-2$
(b) Solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=5 e^{2 x}$
3. (a) If $\mathrm{x}=e^{r} \cos \theta, \mathrm{y}=e^{r} \tan \theta$, show that $J\left(\frac{\kappa, y}{r, \theta}\right) J\left(\frac{r, \theta}{x, y}\right)=1$.
(b) Find Taylor's series expansion of the $\mathrm{f}(\mathrm{x}, \mathrm{y})=\sin 2 \mathrm{x}$ about $\mathrm{x}=\frac{\pi}{4}$.
4. (a) Trace the curve $r=4 \theta$.
(b) Trace the curve $r=\frac{1}{4}+2 \sin \theta$.
5. (a) Find the surface of the solid generated by revolution of the lemniscate $r^{2}=$ $a^{2} \cos ^{2} \theta$ about the initial line.
(b) Show that the whole length of the curve $x^{2}\left(a^{2}-x^{2}\right)=8 a^{2} y^{2}$ is $\pi a \sqrt{2}$. [8+7]
6. (a) Evaluate $\iint(x+y)^{2} d x$ dy.over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) Transform the following to Cartesian form and hence evaluate $\int_{0}^{\pi} \int_{0}^{a} r^{3} \sin \theta d r d \theta$.
$[8+7]$
7. (a) Prove that $\nabla \cdot\left\{r \nabla\left(\frac{1}{r^{3}}\right)\right\}=\frac{3}{r^{4}}$.
(b) Find the directional derivative of $\Phi(x, y, z)=x^{2} y z+4 x^{2}$ at the point $P=(1,-2,-$ $1)$ in the directional of the normal to the surface $f(x, y, z)=x \log z-y^{2}$ at $(-1,2,1)$.
8. (a) If $f=y i+z j+x k$, find the circulation of f round the curve C, where c is the circle $x^{2}+y^{2}=0, z=0$.
(b) If $\mathrm{f}=\left(\mathrm{x}+\mathrm{y}^{2}\right) \mathrm{i}-2 \mathrm{xj}+2 \mathrm{yzk}$, evaluate $\int_{s} f . N d s$ where S is the surface of the plane $2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=6$ in the first octant.
