www.FirstRanker.com

Subject Code: R10102/R10

Set No - 1

I B.Tech I Semester Supplementary Examinations Nov./Dec. - 2015 MATHEMATICS - I

(Common to All Branches)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

$* * * * *$

1. (a) If 30% of a radioactive substance disappear in 10 days, how long will it take for 90% of it to disappear?
(b) Solve the D.E $\left(\cos ^{3} x\right) y^{1}+y \cos x=\sin x$
2. (a) Solve the D.E $\left(D^{2}-4\right) y=e^{2 x}+\sin 2 x$
(b) Solve the D.E $\left(D^{2}-4 D+2\right) y=x^{2} e^{2 x}+\cos 2 x$
3. (a) Verify whether $u=\frac{x+y}{1-x y} \& v=\tan ^{-1}(x)+\tan ^{-1}(y)$ are functionally depended or independent.
(b) Find Taylor series expansion for $\tan ^{-1}(y / x)$ about $(1,1)$
4. (a) Trace the curve $x y^{2}=a^{2}(x-a) \quad(a>0)$
(b) Trace the curve $\mathrm{r}=\mathrm{a}(1+\cos \theta)$
5. (a) Find the perimeter of the curve $\mathrm{r}=\mathrm{a}(\cos \theta+\sin \theta)$
(b) Find the volume of the solid generated by revolution of $x=\operatorname{acos}^{3} \theta, y=\sin ^{3} \theta$ about its x axis.
6. (a) By change of order of integration evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left(x^{2}+y^{2}\right) d x d y$
(b) Evaluate $\iiint x y z d x d y d z$ over a positive octant of a sphere with centre zero and radius a.
7. (a) Find the directional derivative of $f=x^{3} y^{2} z$ at $(1,2,3)$ along the direction of $9 \overrightarrow{9}+\overrightarrow{3 j}+\vec{k}$
(b) Prove that curl(curlf) $=\operatorname{grad} \operatorname{divf}-\nabla^{2} f$
8. Verify Stokes theorem for $f=y^{2} i+y j-z x k$ and S is the upper half of the surface
$x^{2}+y^{2}+z^{2}=a^{2}$ and $z \geq 0$.

Page 1 of 1

www.FirstRanker.com

Subject Code: R10102/R10

I B.Tech I Semester Supplementary Examinations Nov./Dec. - 2015 MATHEMATICS - I

Answer any FIVE Questions
 All Questions carry equal marks

$* * * * *$

1. (a) Solve the D.E $x y^{1}-2 y=x y^{4}$
(b) Find the orthogonal trajectories of the system of curves $\left(\frac{d y}{d x}\right)^{2}=a / x$
2. (a) Solve the D.E $\left(D^{2}+3 D+2\right) y=x^{2}+e^{-x}$
(b) Solve the D.E $\left(D^{2}-4 D+3\right) y=e^{x} \cos 2 x$
3. (a) Find Taylor series expansion for e^{x+y} about $(1,1)$
(b) Discuss the maxima or minima of $\sin x+\sin y+\sin (x+y)$
4. (a) Trace the curve $x y^{2}=4 a^{2}(2 a-x)(a>0)$
(b) Trace the curve $r=a(1-\cos \theta)$
5. (a) Find the length of the arc of the curve $\mathrm{x}=\mathrm{a}(\cos \theta+\theta \sin \theta), \mathrm{y}=\mathrm{a}(\sin \theta-\theta \cos \theta)$ from $\theta=0$ to any point on the curve.
(b) Find the volume of the solid generated by revolution of ellipse about its minor axis.
6. (a) By change of order of integration evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x y d x d y$
(b) Evaluate $\iiint x y^{2} z d x d y d z$ over a positive octant of a sphere with centre zero and radius a.
7. (a) Find the directional derivative of $f=x^{2}-2 y^{2}+z=2$ at $(1,-1,2)$ along the direction of $i+3 j+2 k$.
(b) Prove that $\operatorname{grad}(f . g)=f \times \operatorname{curl} g+g \times \operatorname{curlf}+(f . \nabla) g+(g . \nabla) f$
8. Verify Stokes theorem for $f=\left(x^{2}-y^{2}\right) i+2 x y j$ and C is the rectangle in the $x y$-plane bounded by $x=0, x=a, y=0, y=b$.

Page 1 of 1

Subject Code: R10102/R10

Set No - 3

I B.Tech I Semester Supplementary Examinations Nov./Dec. - 2015 MATHEMATICS - I

Answer any FIVE Questions All Questions carry equal marks

$* * * * *$

1. (a) Solve the D.E $e^{y} d x+\left(x e^{y}+2 y\right) d y=0$.
(b) If the temperature of air is $20^{\circ} \mathrm{C}$ and the temperature of the body drops from $100^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 10 minutes. What will be its temperature after 20 minutes. When will be the temperature $40^{\circ} \mathrm{C}$
2. (a) Solve the D.E $\left(D^{2}-4 D+4\right) y=e^{2 x}+x^{3}$
(b) Solve the D.E $\left(D^{2}+1\right) y=x \cos x$
3. (a) Find the points on the surface $z^{2}=x y+1$ nearest to origin
(b) Prove that $\mathrm{J} . \mathrm{J}^{1}=1$ for $\mathrm{x}=\mathrm{u}(1-\mathrm{v}), \mathrm{y}=\mathrm{uv}$
4. (a) Trace the curve $\mathrm{x}=\mathrm{a}(\theta+\sin \theta), \mathrm{y}=\mathrm{a}(1-\cos \theta)$
(b) Trace the curve $\mathrm{r}=\mathrm{a} \sin 2 \theta$
5. (a) Find the length of the arc of the curve $y^{3}=a x^{2}$ from $(0,0)$ to $(a / 8, a / 4)$
(b) Find the surface of the solid generated $r^{2}=a^{2} \cos 2 \theta$ about the initial line.
6. (a) By change of order of integration evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$
(b) Evaluate $\int_{0}^{e} \int_{0}^{\log y} \int_{0}^{e^{x}} \log z d z d x d y$
7. (a) Find the directional derivative of $f=x^{3} y^{2} z^{2}=4$ at $(-1,-1,2)$ along the direction of $4 i+3 j+2 k$
(b) Prove that $\operatorname{curl}(\operatorname{grad} \varphi)=0$, where φ is a scalar point function
8. Verify Green's theorem for $\mathrm{f}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \mathrm{i}-2 \mathrm{xyj}$ and C is the rectangle in the xy -plane bounded by $x=0, x=a, y=0, y=b$.
www.FirstRanker.com

Subject Code: R10102/R10

Set No - 4

I B.Tech I Semester Supplementary Examinations Nov./Dec. - 2015 MATHEMATICS - I

Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions All Questions carry equal marks

* * * * *

1. (a) The number of N of bacteria in a culture grew at a rate proportional to N .

Thevalue of N was initially 100 and increased to 332 in one hour. What was the value of N after $3 / 2$ hours.
(b) Solve the D.E $y(x y+1) d x+x(1-x y) d y=0$
2. (a) Solve the D.E $\left(D^{2}-4 D+3\right) y=\sin 3 x \cos 2 x$
(b) Solve the D.E $\left(D^{2}-1\right) y=x^{2}+x \sin x$
3. (a) Find Taylor series expansion for $e^{x} \cos y$ about $(1, \pi / 4)$
(b) Find the minima value of $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ given that $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=\mathrm{p}$ by Lagrange's method of multipliers.
4. (a) Trace the curve $\mathrm{x}=\mathrm{a}(\theta-\sin \theta), \mathrm{y}=\mathrm{a}(1+\cos \theta)$
(b) Trace the curve $\mathrm{r}^{2}=\mathrm{a}^{2} \sin 2 \theta$
5. (a) Find the length of the arc of the curve $y=\log \sec x$ from $x=0$ to $x=\pi / 3$
(b) Find the surface of the solid generated $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ about the initial line.
6. (a) By change of order of integration evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y$
(b) Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} d z d x d y$
7. (a) Find the directional derivative of $f=x y+y z+z x$ at $(1,2,3)$ along the direction of $3 i+4 j+5 k$
(b) Prove that $\operatorname{div}($ curlf $)=0$ where f is a vector function
8. Verify Gauss divergence theorem for $f=y i+x j+z^{2} k$ for the cylindrical region given by $x^{2}+y^{2}=a^{2}, z=0, z=h$.

