Subject Code: R13102/R13

Set No - 1

I B. Tech I Semester Supplementary Examinations August - 2015 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours
Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(a) Find Laplace transform of Dirac Delta function?
(b) At the start of an experiment, there are 100 bacteria. If the bacteria follow an exponential growth pattern with rate $\mathrm{k}=0.02$, what will be the population after 5 hours? How long will it take for the population to double?
(c) Discuss about Jacobian?
(d) Explain about Laplace equation?
(e) Find $\frac{1}{D^{3}}(\cos x)$
(f) Define extreme value?

$$
[4+4+4+3+4+3]
$$

PART-B

2.(a) Find the maximum and minimum values of $\mathrm{x}+\mathrm{y}+\mathrm{z}$ subject to $\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}=1$
(b) Solve $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=e^{x} \sin 2 x$
3.(a) Solve $\left(1+y^{2}\right)+\left(x-e^{t a n^{-1} y}\right) \frac{d y}{d x}=0$
(b) Using Laplace transforms, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=3 e^{2 t} \sin 3 t$.
4. Solve the following heat problem for the given initial conditions.
$\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$
$\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}) \quad \mathrm{u}(0, \mathrm{t})=0 \quad \mathrm{u}(\mathrm{L}, \mathrm{t})=0$
(a) $\mathrm{f}(\mathrm{x})=6 \sin \left(\frac{\pi \mathrm{x}}{\mathrm{L}}\right)$
(b) $\mathrm{f}(\mathrm{x})=12 \sin \left(\frac{9 \pi \mathrm{x}}{\mathrm{L}}\right)-7 \sin \left(\frac{4 \pi \mathrm{x}}{\mathrm{L}}\right)$

Subject Code: R13102/R13

5.(a) Find the Laplace transforms of the given functions
(i) $\left\{\frac{1-\cos a t}{t^{2}}\right\}$
(ii) $3 \sinh (2 t)+3 \sin (2 t)$
(b) A bottle of soda pop at room temperature $\left(92^{0} \mathrm{~F}\right)$ is placed in a refrigerator where the temperature is $64^{\circ} \mathrm{F}$. After half an hour the soda pop has cooled to $81^{\circ} \mathrm{F}$.
(i) What is the temperature of the soda pop after another half hour?
(ii) How long does it take for the soda pop to cool to $70^{\circ} \mathrm{F}$?
6.(a) Form the differential equation form $z=y f\left(x^{2}+z^{2}\right)$.
(b) Solve $\left(p^{2}-q^{2}\right) z=x-y$.
7. A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest in its equilibrium position. If it is vibrating by giving to each of its points a velocity $\lambda x(l-x)$, find the displacement of the string at any distance x from one end at any time t.
www.FirstRanker.com

Subject Code: R13102/R13

Set No - 2

I B. Tech I Semester Supplementary Examinations August - 2015 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours
Max. Marks: 70

Question Paper Consists of Part-A and Part-B
 Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(a) State convolution theorem?
(b) Find the Laplace transform of Heaviside's function?
(c) Discuss about Bernoulli's equation?
(d) Find $\frac{1}{D}\left(x^{2}\right)$
(e) Explain about one dimensional heat equation?
(f) Explain chain rule of partial differentiation?
$[3+4+3+3+5+4]$

PART-B

2.(a) Solve the following IVP and find the interval of validity for the solution.

$$
2 x y-9 x^{2}+\left(2 y+x^{2}+1\right) \frac{d y}{d x}=0, \quad y(0)=-3
$$

(b) Determine the orthogonal trajectories of the family of circles $x^{2}+(y-c)^{2}=c^{2}$ tangent to the x-axis at the origin.
3.(a) Suppose that the population of a colony of bacteria increases exponentially. At the start of an experiment, there are 6,000 bacteria, and one hour later, the population has increased to 6,400 . How long will it take for the population to reach 10,000 ? Round your answer to the nearest hour.
(b) Find and classify all the critical points of $f(x, y)=4+x^{3}+y^{3}-3 x y$
4.(a) Find the Laplace transforms of the given functions.
(i) $f(t)=6 e^{-5 t}+e^{3 t}+5 t^{3}-9$
(ii) $\mathrm{g}(\mathrm{t})=\mathrm{e}^{3 \mathrm{t}}+\cos (6 \mathrm{t})-\mathrm{e}^{3 \mathrm{t}} \cos (6 \mathrm{t})$
(b) Find the Laplace transform of $f(t)=|t-1|+|t+1|, t \geq 0$
5.(a) Solve $D^{4} y-y=\cos x \cos h x$?
(b) Using Laplace transforms, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=e^{-t} \sin t$.

Subject Code: R13102/R13

6.(a) Solve $2 x^{4} p^{2}-y z q-3 z^{2}=0$.
(b) Solve $p \tan x+q \tan y=\tan z$
7. A tightly stretched string with fixed end points $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{p}$ is initially in a position given by $y=y_{0} \sin ^{3} \frac{\pi x}{p}$. If it is released from rest from this position, find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$.
www.FirstRanker.com

Subject Code: R13102/R13

Set No - 3

I B. Tech I Semester Supplementary Examinations August - 2015 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours
Max. Marks: 70

Question Paper Consists of Part-A and Part-B
 Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B
 $$
* * * * *
$$

PART-A

1.(a) Define saddle point?
(b) Explain about law of natural decay?
(c) Find $\frac{1}{D^{2}+5 D+6} e^{x}$
(d) Give the statement of Convolution theorem?
(e) Explain about wave equation?
(f) Define functional dependence?

PART-B

2.(a) Show that the functions $u=x y+y z+z x, v=x^{2}+y^{2}+z^{2}$ and $w=x+y+z$ are functionally dependent.
(b) Form the partial differential equation by eliminating the arbitrary function ϕ from: $\phi\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right)=0$
3.(a) Solve $1+p^{2}=q z$
(b) Solve the differential equation $y^{11}+4 y=\tan 2 x$
4.(a) Find the inverse transform of each of the following.
(i) $F(s)=\frac{1-3 s}{s^{2}+8 s+21}$
(ii) $G(s)=\frac{s+7}{s^{2}-3 s-10}$
(b) A bottle of soda pop at room temperature $\left(72^{\circ} \mathrm{F}\right)$ is placed in a refrigerator where the temperature is $44^{\circ} \mathrm{F}$. After half an hour the soda pop has cooled to $61^{\circ} \mathrm{F}$.
(i) What is the temperature of the soda pop after another half hour?
(ii) How long does it take for the soda pop to cool to $50^{\circ} \mathrm{F}$?
5.(a) Using Laplace transforms, solve $\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+5 x=e^{t} \sin 2 t$
(b) Find the orthogonal trajectories of the confocal and coaxial parabolas

$$
\begin{equation*}
r=\frac{2 a}{1+\cos \theta} \tag{8+8}
\end{equation*}
$$

Subject Code: R13102/R13

6. A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$
u(x, 0)=\left\{\begin{array}{cc}
x & ; 0 \leq x \leq 50 \\
100-x ; 50 \leq x \leq 100
\end{array}\right.
$$

Find the temperature $u(x, t)$ at any time.
7.(a) Obtain the Taylor's series expansion of $\sin x$ in powers of $x-\frac{\pi}{4}$
(b) Solve $\frac{d y}{d x}-y \tan x=\frac{\sin x \cos ^{2} x}{y^{2}}$

Subject Code: R13102/R13

I B. Tech I Semester Supplementary Examinations August - 2015 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours
Max. Marks: 70

Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

> *****

PART-A

1.(a) Form the differential equation from $z=a x^{3}+b y^{3}$
(b) Explain about Newton's law of cooling?
(c) Find the inverse Laplace transform of $F(s)=\frac{6 s-5}{s^{2}+7}$
(d) Obtain Maclaurin's series for e^{x}
(e) Solve $z=p x+q y+p q$
(f) Find the particular integral of $\frac{1}{D^{2}+6 D+9}\left(2 e^{-3 x}\right)$

PART-B

2.(a) Solve $y^{2} p-x y q=x(z-2 y)$.
(b) Solve $(x+1) \frac{d y}{d x}-x y=e^{x}(x+1)^{n+1}$
3.(a) Use a convolution integral to find the inverse transform of the following transform.
$H(s)=\frac{1}{\left(s^{2}+a^{2}\right)^{2}}$
(b) Write the following function (or switch) in terms of Heaviside functions and its Laplace transform.

$$
f(t)= \begin{cases}-4 & \text { if } t<6 \\ 25 & \text { if } 6 \leq t<8 \\ 16 & \text { if } 8 \leq t<30 \\ 10 & \text { if } t \geq 30\end{cases}
$$

4.(a) Solve the following differential equation. $\left(D^{2}+4\right) y=\sec 2 x$.
(b) Investigate for the maxima and minima, if any of $x^{3} y^{2}(1-x-y)$.

Subject Code: R13102/R13

5. A homogenous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$
u(x, 0)=\left\{\begin{array}{c}
x \quad ; 0 \leq x \leq 5 \\
100-x ; 50 \leq x \leq 100
\end{array}\right.
$$

Find the temperature $\mathrm{u}(\mathrm{x}, \mathrm{t})$ at any time.
6.(a) An object cools from 120° to $95^{\circ} \mathrm{F}$ in half an hour when surrounded by air whose temperature is $70^{\circ} \mathrm{F}$. Find its temperature at the end of another half an hour.
(b) Form the differential equation from $z=x f(2 x+3 y)+g(2 x+3 y)$.
7. (a) Solve $p^{3}+q^{3}=8 z$
(b) Expand the function $f(x, y)=e^{x} \log (1+y)$ in terms of x and y up to the terms of $3^{\text {rd }}$ degree using Taylor's thereom?

