Subject Code: R13102/R13

Set No - 1

I B.Tech I Semester Regular/Supple. Examinations Nov./Dec. - 2015 MATHEMATICS-I

(Common to All Branches)
Max. Marks: 70
Time: 3 hours

$$
\begin{aligned}
& \text { Question Paper Consists of Part-A and Part-B } \\
& \text { Answering the question in Part-A is Compulsory, } \\
& \text { Three Questions should be answered from Part-B } \\
& * * * * *
\end{aligned}
$$

PART-A

1. (a) Solve the D.E $\tan y \frac{d y}{d x}+\tan x=\cos y \cos ^{2} x$
(b) Solve the D.E $\left(D^{2}-a^{2}\right) y=e^{-a x}+\sin a x$
(c) Find the Laplace transform of $\frac{e^{a t}-e^{b t}}{t}$
(d) Find $J\left(\frac{u, v}{x, y}\right)$ if $u=e^{x} \& v=e^{y}$
(e) Form the PDE by eliminating the arbitrary function $f\left(x+y+z, x y-z^{2}\right)=0$
(f) Solve the PDE by variable separable method $\frac{\partial^{2} u}{\partial x \partial t}=e^{-t} \cos x$

$$
[4+4+3+3+4+4]
$$

PART-B

2. (a) Solve the D.E $\left(D^{2}+a^{2}\right) y=\sec a x$
(b) A mass ' m ' suspended from one end of a spring is subjected to force $f=f_{0}$ sinat in the direction of its length. The force f is measured positive vertically down words and time $\mathrm{t}=0, \mathrm{~m}$ is at rest. If the spring constant is k , then find the displacement of m at time t .
3. (a) Solve the D.E $x(3 y d x+2 x d y)+8 y^{4}(y d x+x d y)=0$
(b) A body is heated to $105^{\circ} \mathrm{c}$ and placed in a air at $15^{\circ} \mathrm{c}$.After 1 hour its temperature is $60^{\circ} \mathrm{c}$. How much time is required for it to $\operatorname{cool} 37^{\circ} \mathrm{c}$.
4. (a) Find the Laplace transform of (i) $\mathrm{L}\left\{\mathrm{t} \cdot \mathrm{e}^{-\mathrm{t}} \sin \mathrm{t}\right\}$ (ii) $\mathrm{L}\{\sinh \mathrm{at} . \sin \mathrm{at}\}$
(b) Find $L^{-1}\left(\frac{s}{s^{4}+4 a^{4}}\right)$
5. (a) Expand $\mathrm{e}^{2 \mathrm{x}} \sin 3 \mathrm{y}$ in a Taylor's series about $(0,0)$
(b) Find the maxima and minima of $x^{3} y^{2}(1-x-y)$
6. (a) Solve the $\operatorname{PDE} z\left(z^{2}+x y\right)(p x-q y)=x^{4}$
(b) Solve the $\operatorname{PDE}\left(\mathrm{D}^{2}-\mathrm{DD}^{1}\right) \mathrm{z}=\cos x \cos 2 \mathrm{y}$
7. The ends A and B of rod 20 cm long have the temperature at $30^{\circ} \mathrm{c}$ and $80^{\circ} \mathrm{c}$ until steady state prevail. The temperature of the ends are changed at $40^{\circ} \mathrm{c}$ and $60^{\circ} \mathrm{c}$ respectively. Find the temperature distribution in the rod at time t.

Subject Code: R13102/R13

Set No - 2

I B.Tech I Semester Regular/Supple. Examinations Nov./Dec. - 2015 MATHEMATICS-I

(Common to All Branches)
Time: 3 hours
Max. Marks: 70

$$
\begin{aligned}
& \text { Question Paper Consists of Part-A and Part-B } \\
& \text { Answering the question in Part-A is Compulsory, } \\
& \text { Three Questions should be answered from Part-B } \\
& * * * * *
\end{aligned}
$$

PART-A

1. (a) Solve the D.E $\frac{d y}{d x}+\frac{y}{x} \log y=\frac{y}{x}(\log y)^{2}$
(b) Solve the D.E $\left(D^{2}+a^{2}\right) y=e^{a x}+\cos a x$
(c) Find the Laplace transform of $\frac{\cos a t-\cos b t}{t}$
(d) Find $J\left(\frac{u, v}{x, y}\right)$ if $u=e^{x+y} \& v=e^{-x+y}$
(e) Form the PDE by eliminating the arbitrary function $f(x y+y z+z x, x+y+z)=0$
(f) Solve the PDE by variable separable method $\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial z}{\partial y}+2 z$

PART-B

2. (a) Solve the D.E $\left(D^{2}+a^{2}\right) y=\operatorname{tanax}$.
(b) A mass 4.9 kg is suspended fromone end of a spring. A pull of 10 kg will stretch it to 5 cm , The mass is pull down 6 cm below the static equilibrium position and then released. then find the displacement of mass at time t.
3. (a) Solve the D.E $x y(y d x+x d y)+x^{2} y^{2}(2 y d x-x d y)=0$
(b) The rate of at which the bacteria multiply is proportional to the instantaneous number present .If the original number doubles in 2 hrs, in how many hours will it triple.
4. (a) Find the Laplace transform of periodic function $f(t)= \begin{cases}t / a & 0 \leq t \leq a \\ (2 a-t) / a & a \leq t \leq 2 a\end{cases}$
(b) Find $L^{-1}\left(\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right)$
5. (a) Using Taylor's series expand $\mathrm{e}^{\mathrm{x}} \cdot \cos \mathrm{y}$ near $(1, \pi / 4)$
(b) Find the maximum and minimum distance of the point $(3,4,12)$ from the sphere $z^{2}+x^{2}+y^{2}=1$ using Lagrange's multiplier method.

Subject Code: R13102/R13

6. (a) Solve the $\operatorname{PDE}\left(x^{2}+y^{2}+y z\right) p+\left(x^{2}+y^{2}-x z\right) q=z(x+y)$
(b) Solve the $\operatorname{PDE}\left(D^{3}-2 D^{2} D^{1}\right) z=2 e^{2 x}+3 x^{2} y$.
7. A rod 100 cm long, with insulated sides has kept the temperature at $0^{\circ} \mathrm{c}$ and $100^{\circ} \mathrm{c}$ until steady state prevail. The two ends are suddenly insulated and kept so. Find the temperature distribution in the rod.

Subject Code: R13102/R13

Set No - 3

I B.Tech I Semester Regular/Supple. Examinations Nov./Dec. - 2015 MATHEMATICS-I

(Common to All Branches)
Time: 3 hours
Max. Marks: 70

$$
\begin{aligned}
& \text { Question Paper Consists of Part-A and Part-B } \\
& \text { Answering the question in Part-A is Compulsory, } \\
& \text { Three Questions should be answered from Part-B } \\
& * * * * *
\end{aligned}
$$

PART-A

1. (a) Solve the D.E $\frac{d y}{d x}+\frac{y}{x \log x}=\frac{\sin 2 x}{\log x}$
(b) Solve the D.E $\left(D^{2}+4\right) y=x e^{2 x}$
(c) Evaluate $\int_{0}^{\infty} \frac{\sin t}{t} d t$
(d) Find $J\left(\frac{u, v, w}{x, y, z}\right)$ if $u=x+y+z, u v=y+z, u v w=z$
(e) Solve the PDE $x p-y q=y^{2}-x^{2}$
(f) Solve the PDE by variable separable method $4 \frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}=3 z$ and $z(0, y)=e^{-5 y}$

$$
[4+4+3+3+4+4]
$$

PART-B

2. (a) Solve the D.E $\left(D^{2}+a^{2}\right) y=x \sin a x$
(b) In an L-C-R circuit, the charge of on a plate of an condenser is given by $\mathrm{Lq}^{11}+\mathrm{Rq}^{1}+\mathrm{q} / \mathrm{c}=\mathrm{E}$ sinpt. If initially the current and charge are zero. Then find current in the circuit.
3. (a) Solve the D.E $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$
(b) Find the orthogonal trajectory of $\mathrm{r}^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \cos n \theta$.
4. (a) Find the Laplace transform of periodic function $f(t)= \begin{cases}\sin a t & 0 \leq t \leq \pi / a \\ -\sin a t & \pi / a \leq t \leq 2 \pi / a\end{cases}$
(b) Find $L^{-1}\left(\frac{s}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right)$ using convolution theorem.
5. (a) Expand $\mathrm{e}^{\mathrm{x}} \log (1+\mathrm{y})$ in a Taylor's series about $(0,0)$
(b) Find the point on the plane of
(i) $2 x+3 y-z=5$
(ii) $3 x-4 y+5 z=26$ which is nearest to the origin.

Subject Code: R13102/R13
6. (a) Solve the $\operatorname{PDE}\left(x^{2}-y^{2}-y z\right) p+\left(x^{2}-y^{2}-x z\right) q=z(x-y)$
(b) Solve the $\operatorname{PDE}\left(D^{2}-4 D D^{1}+D^{1^{2}}\right) z=e^{2 x+y}$
7. Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$ subject to

$$
\begin{aligned}
& u(0, y)=0, u(l, y)=0 \\
& u(x, 0)=0(0<x<l) \\
& u(x, l)=x(l-x)(0<x<l)
\end{aligned}
$$

Subject Code: R13102/R13

Set No - 4

I B.Tech I Semester Regular/Supple. Examinations Nov./Dec. - 2015 MATHEMATICS-I

(Common to All Branches)
Time: 3 hours
Max. Marks: 70

$$
\begin{aligned}
& \text { Question Paper Consists of Part-A and Part-B } \\
& \text { Answering the question in Part-A is Compulsory, } \\
& \text { Three Questions should be answered from Part-B } \\
& * * * * *
\end{aligned}
$$

PART-A

1. (a) Solve the D.E $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$
(b) Solve the D.E $\left(D^{2}+4 D+4\right) y=e^{-2 x}+x^{2}$
(c) Evaluate $\int_{0}^{\infty} e^{-3 t} t \sin t d t$
(d) Find $J\left(\frac{u, v, w}{x, y, z}\right)$ if $u=y z / x, v=x z / y, w=x y / z$
(e) Solve the $\operatorname{PDE} z\left(p^{2}+q^{2}+1\right)=1$
(f) Solve the PDE by variable separable method $3 \frac{\partial z}{\partial x}+2 \frac{\partial z}{\partial y}=0$ and $z(x, 0)=4 e^{-x}$

PART-B

2. (a) Solve the D.E $\left(D^{2}+a^{2}\right) y=$ cosecax.
(b) In an L-C-R circuit, the current i is given by $\mathrm{Li}^{11}+\mathrm{Ri}^{1}+1 / \mathrm{c}=\mathrm{pE}$ cospt. Then find current in the circuit ' i ' when (i) $\mathrm{cR}^{2}>4 \mathrm{~L}$. (ii) $\mathrm{cR}^{2}<4 \mathrm{~L}$
3. (a) Solve the D.E $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$
(b) Find the orthogonal trajectory of $\mathrm{r}^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \sin n \theta$
4. (a) Find the Laplace transform of periodic function $f(t)= \begin{cases}\cos a t & 0 \leq t \leq \pi / a \\ -\cos a t & \pi / a \leq t \leq 2 \pi / a\end{cases}$
(b) Find $\mathrm{L}^{-1}\left\{\frac{1}{(\mathrm{~s}-2)(\mathrm{s}+2)^{2}}\right\}$ using convolution theorem.
5. (a) Expand e^{x}.siny in powers of x \& y
(b) Find the Extrema of (i) $a^{2}-x^{2}-y^{2} \quad$ (ii) $x^{3} y^{2}-x y$

Subject Code: R13102/R13

6. (a) Solve the PDE (mz-ny)p+(nx-lz)q $=(\operatorname{ly}-m x)$
(b) Solve the $\operatorname{PDE}\left(D^{2}+D D^{1}-6 D^{1^{2}}\right) z=\cos (2 x+y)$
7. Solve the wave equation $c^{2} \frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial^{2} y}{\partial t^{2}}$ subject to

$$
\begin{aligned}
& y(0, t)=0, y(l, t)=0 \\
& y(x, 0)=f(x)(0<x<l) \\
& \frac{\partial y}{\partial t}(x, 0)=g(x)(0<x<l)
\end{aligned}
$$

Also find the solution (i) if $f(x) \neq 0, g(x)=0$ (ii) $f(x)=0, g(x) \neq 0$

