www.FirstRanker.com

Subject Code: R13107/R13

I B. Tech I Semester Regular Examinations Jan./Feb. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, ECom E and Agri.E)
Time: $\mathbf{3}$ hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(a) Write iterative scheme to find the fourth root of 11.
(b) Find $\Delta \log f(x)$.
(c) Given $y^{\prime}=x+y, y(0)=1$, find the value of $y(0.4)$ (take $\mathrm{h}=0.2$) using Euler's method.
(d) Find the Fourier series of the periodic function with period ' 1 ',

(e) If F_{p} is complex Fourier transform of $\mathrm{f}(\mathrm{x})$, then find the complex Fourier transform of $\mathrm{f}(\mathrm{x}) \sin \mathrm{ax}$.
(f) Prove that $Z(\sinh n t)=\frac{z \sinh t}{z^{2}-2 z \cosh t+1}$

$$
[4+3+4+4+4+3]
$$

PART - B

2.(a) Using Regulae falsi method, fied the real root correct to three decimal places of the equation $x e^{x}-2=0$.
(b) Find $f(2.5)$ using Newton's forward formulae for the following data:

X	0	1	2	3	4	5
y	0	1	15	75	225	615

3.(a) If the interval of differencing is $\frac{1}{2}$ find $\Delta^{2} \sin (p x+q)$
(b) Find a real root of $\mathrm{x}+\log _{10} \mathrm{x}-2=0$ using Newton Raphson method.
4.(a) Solve $y^{1}=x-y^{2}, y(0)=1$ by using Taylor's series method and compute $y(0.1)$.
(b) Find Half range fourier cosine series of $f(x)=x$ in the range $0<x<2 \pi$ and hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.
5.(a) Obtain fourier series for the function $f(x)=x \sin x, 0<x<2 \pi$.
(b) Solve $y^{1}=y-x, y(0)=2$ for $x=0.2$ by using Runge-Kutta Method of fourth order.

Page 1 of 2

Subject Code: R13107/R13

6.(a) Express $f(x)=\left\{\begin{array}{ll}1 & \text {; for } 0 \leq x \leq \pi \\ 0 & ; \quad \text { for } x>\pi\end{array}\right.$ as a Fourier integral and hence evaluate $\int_{0}^{\infty} \frac{1-\cos \pi \lambda}{\lambda} \sin (\lambda x) d \lambda$
(b) Find inverse Z-transform of $\frac{Z}{(Z-1)(Z-2)}$.
7.(a) Solve the difference equation using Z-transform $y(n+2)-5 y(n+1)+6 y(n)=5^{[8+8]}$, given $y(0)=0, y(1)=0$.
(b) Find inverse fourier transform of $F(p)=e^{-|p| y}$.

Subject Code: R13107/R13

I B. Tech I Semester Regular Examinations Jan./Feb. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, ECom E and Agri.E)
Time: $\mathbf{3}$ hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(a) Write iterative scheme to find the $n^{\text {th }}$ root of a real number $\mathrm{K}(>0)$.
(b) Find $\Delta^{2} \sin (p x+q)$.
(c) Find the Fourier series of the periodic function with period ' 1 ',

(d) If F_{p} is complex Fourier transform of $\mathrm{f}(\mathrm{x})$, then find the complex Fourier transform of $\mathrm{f}(\mathrm{x}) \cos \mathrm{ax}$.
(e) Find the Z-transform of $\sin (n+1) x$.
(f) Using Euler's method, find the value of $\mathrm{y}(0.5)$ (take $\mathrm{h}=0.25$) and compare with the exact solution of the equation $y^{\prime}=x+y, y(0)=1$.

PART - B

2.(a) Using Regula-Falsi Method, find the real root of, correct to three decimal places, the equation $\log x=\cos x$.
(b) Find y (1.91) using Gauss forward difference formula

x	1	2	3	4	5
y	5	14.5	14	13.25	12

3.(a) If $f(x)=e^{a x}$, Show that $\Delta^{n} f(x)=\left(e^{a h}-1\right)^{n} e^{a x}$.
(b) Find the root of $e^{x}-x^{3}+\cos 25 x=0$ near $\mathrm{x}=4.5$ (correct to three decimal places).
4.(a) Solve $y^{\prime}=y-x^{2}, y(0)=1$ by Picard's method up to fourth approximation.
(b) Find a Fourier series to represent the function $f(x)=e^{x}$ in $-\pi<x<\pi$ and hence deduce a series for $\frac{\pi}{\sinh \pi}$

Subject Code: R13107/R13

5.(a) Find Half Range sine series of $f(x)=x(\pi-x)$ on $0<x<\pi$ and deduce that

$$
\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots=\frac{\pi^{3}}{32}
$$

(b) Using Runge-Kutta method of $4^{\text {th }}$ order, compute y (1.1) for the equation $y^{\prime}=3 x+y^{2}, y(1)=1.2$.
6.(a) Prove that Fourier transform of $\left(x^{n} f(x)\right)=(-i)^{n} \frac{d^{n}}{d p^{n}}[F(p)]$.
(b) Find $Z\left(\frac{1}{n(n+1)}\right)$.
7.(a) Solve the difference equation, using Z-transform $y(n+2)+3 y(n+1)+2 y(n)=0$ given $y(0)=0, y(1)=1$.
(b) Find Fourier cosine transform of $e^{-a x}, a>0$ and hence evaluate $\int_{0}^{\infty} \frac{\cos p x}{a^{2}+p^{2}} d p$.

Subject Code: R13107/R13
 Set No - 3

 I B. Tech I Semester Regular Examinations Jan./Feb. - 2015

 I B. Tech I Semester Regular Examinations Jan./Feb. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS) MATHEMATICS-II (MATHEMATICAL METHODS)
 (Common to ECE, EEE, EIE, Bio-Tech, ECom E and Agri.E)
 Time: $\mathbf{3}$ hours
 Max. Marks: 70
 Question Paper Consists of Part-A and Part-B
 Answering the question in Part-A is Compulsory,
 Three Questions should be answered from Part-B

PART-A

1.(a) Write iterative scheme to find the root of the quadratic equation $a x^{2}+b x+c=0, a \neq 0$.
(b) Prove that $\mathrm{E}^{1 / 2}=\mu+\frac{1}{2} \delta$
(c) Find the Fourier series of the periodic function (of period 2) given by

(2.0)
(d) If F_{p} is complex Fourier transform of $\mathrm{f}(\mathrm{x})$, then find the complex Fourier transform of $\mathrm{f}(\mathrm{x}) \sin \mathrm{ax}$.
(e) Given $y^{\prime}=x+y, y(0)=1$, find the value of $\mathrm{y}(0.4)$ using Picard's method up to second degree term.
(f) Find the Z-transform of $\cos (n+1) x$.

PART - B

2.(a) Using Regula Falsi method solve the equation $e^{x} \sin x=1$.
(b) Using Lagrange's interpolation formula find $y(10)$ from the data given below:

X	5	6	9	11
y	12	13	14	15

3.(a) Prove that $\nabla \Delta=\Delta-\nabla=\delta^{2}$.
(b) Find approximate root of the equation $x^{3}-8 x-4=0$ near 3 .
4.(a) Given $y^{1}=\frac{y-x}{y+x}, y(0)=1$ compute $y(0.2)$ in steps of 0.1 using modified Euler's method.
(b) If $f(x)=|x|$ expand $f(x)$ as fourier series in the interval $(-2,2)$.

Subject Code: R13107/R13

5.(a) If $f(x)=\left\{\begin{array}{ll}x & ; \text { if } 0<x<\frac{\pi}{2} \\ \pi-x & \text {; if } \frac{\pi}{2}<x<\pi\end{array}\right.$ Find Half range sine series of $f(x)$.
(b) Using Runge-Kutta method of fourth order, compute $y(2.5)$ for the equation $y^{1}=\frac{x+y}{x}, y(2)=2$.
6.(a) Find Fourier transform of $f(x)=e^{-|x|}$ and hence deduce that $\int_{0}^{\infty} \frac{\cos x t}{1+t^{2}} d t=\frac{\pi}{2} e^{-|x|}$.
(b) Evaluate $Z^{-1}\left[\frac{Z^{2}}{(z-3)(Z-4)}\right]$
7.(a) Find finite Fourier cosine transform of $f(x)=\left(1-\frac{x}{\pi}\right)^{2}$ in $(0, \pi)$.
(b) Using Z-transform, solve the difference equation $y_{n+2}-5 y_{n+1}-6 y_{n}=2^{n}$ using $y_{0}=0, y_{1}=0$.

Subject Code: R13107/R13
 Set No - 4

 I B. Tech I Semester Regular Examinations Jan./Feb. - 2015

 I B. Tech I Semester Regular Examinations Jan./Feb. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS) MATHEMATICS-II (MATHEMATICAL METHODS)
 (Common to ECE, EEE, EIE, Bio-Tech, ECom E and Agri.E)
 Time: $\mathbf{3}$ hours
 Max. Marks: 70
 Question Paper Consists of Part-A and Part-B
 Answering the question in Part-A is Compulsory,
 Three Questions should be answered from Part-B

PART-A

1.(a) Using Newton-Raphson method find the reciprocal of a number.
(b) Express shift operator E in terms of exponential function.
(c) Find half range Fourier sine series of $f(x)=e^{x}$ in $(0,1)$.
(d) Using Euler's method, solve for y at $\mathrm{x}=2$ from $\frac{d y}{d x}=3 x^{2}+1, \mathrm{y}(1)=2$.
(e) If F_{p} is complex Fourier transform of $\mathrm{f}(\mathrm{x})$, then find the complex Fourier transform of $\mathrm{f}(\mathrm{x}) \sin \mathrm{ax}$.
(f) Find the $\mathrm{Z}\left[\mathrm{n}^{2} \mathrm{a}^{\mathrm{n}}\right]$.

PART-B

2.(a) Using Regulae falsi method find approximate root of the equation $x^{3}-x-4=0$.
(b) Find $f(3.5)$ using Newton's forward interpolation formula for the data:

X	0	1	2	3	4	5
y	0	1	12	60	150	225

3.(a) Prove that $(1+\Delta)(1-\nabla)=1$.
(b) Using Newton Raphson method compute $\sqrt[3]{37}$ correct to four decimal places.
4.(a) Using Euler's method solve $y^{1}=x+y, y(0)=1$ for $x=0.2$ and 0.4 , Check with exact solution.
(b) Expand $f(x)=\left\{\begin{array}{cc}1+\frac{2 x}{\pi} ; & \text { if }-\pi \leq x \leq 0 \\ 1-\frac{2 x}{\pi} ; & \text { if } 0 \leq x \leq \pi\end{array}\right.$ as a fourier series and hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.
5.(a) Obtain fourier cosine series for $f(x)=x \sin x ; 0<x<\pi$.
(b) Using Runge-Kutta method of fourth order find $y(0.4)$ for the differential equation $y^{1}=x^{2}+y^{2}, y(0)=0$ use $h=0.2$

Subject Code: R13107/R13

6.(a) Express $f(x)=\left\{\begin{array}{ll}1 ; & 0 \leq x \leq \pi \\ 0 ; & x>\pi\end{array}\right.$ as a fourier sine integral and hence evaluate $\int_{0}^{\infty} \frac{1-\cos \pi \lambda}{\lambda} \sin x \lambda d \lambda$.
(b) Find $Z\left[2 n-5 \sin \frac{n \pi}{4}+3 a^{4}\right]$.
[8+8]
7.(a) Find the solution of the difference equation using Z-transform $y_{n+2}-6 y_{n+1}+9 y_{n}=3^{n}$ with $y_{0}=0, y_{1}=1$.
(b) Find fourier transform of $f(x)=\left\{\begin{array}{r}1-x^{2} ;|x| \leq 1 \\ 0 ;|x|>1\end{array}\right.$

