

www.FirstRanker.com

Subject Code: R13107/R13 I B. Tech I Semester Supplementary Examinations Aug. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, ECom.E, Agri.E)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1.(a) What is the difference between Bisetion method and Regula-Falsi method.
 - (b) Prove the result, $1 + \mu^2 \delta^2 = (1 + \frac{\delta^2}{2})^2$

(c) Find the Picard's first approximation of $\frac{dy}{dx} = 1 + y^2$, y(0) = 0

(d) If $f(x) = \frac{x}{2}$ express and f(x) as a Fourier series in the interval $(-\pi, \pi)$

(e) Find the inverse Finte cosine transform f(x) if $F_c(n) = \frac{\cos(\frac{2n\pi}{3})}{(2n+1)^2}$, where 0 < x < 4

(f) Show that $Z[\sinh n\theta] = \frac{z \sinh \theta}{z^2 - 2z \cosh \theta + 1}$

[3+4+4+4+3+4]

- 2.(a) Find a root correct to 3 decimal places for the equation $x^3 4x + 9 = 0$ using bisection method.
 - (b) Find a real root of the equation $xe^x \cos x = 0$ using Netwon Raphson method.
- 3.(a) Certain values of x and \log_{10}^{x} are (300,2.4771),(304,2.4829),(305,2.4843),(307,2.4871). Find \log_{10}^{301}
 - (b) Using Lagrange's formula find y(5), given that

X	0	1	3	8
у	1	3	13	128

[8+8]

[8+8]

Page 1 of 2

www.FirstRanker.com

Set No - 1

[8+8]

Subject Code: R13107/R13

- Use Runge-Kutta fourth order method to find the value of y when x=1 given that y=1 4.(a) When x=0 , $\frac{dy}{dx} = \frac{y-x}{v+x}$;
 - Use Taylor's series method to approximate y when x=0.1, x=0.2 for $\frac{dy}{dx} = x + y^2$ where (b) y(0) = 0
- Obtain the Fourier series expansion of f(x) given that $f(x) = (\pi x)^2$ in $0 < x < 2\pi$ and 5.(a) Deduce the value of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.

Find the Fourier cosine transform of f(x) defined by $f(x) = \frac{1}{1+x^2}$ hence find Fourier (b) sine transform of $f(x) = \frac{x}{1+x^2}$

$$[8+8]$$
6.(a) Using Fourier integral ,show that $e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda$, (a>0,x≥0)
(b) Obtain a half -range cosine series for $f(x) = \begin{cases} kx; for 0 \le x \le l/2 \\ k(x-1); for l/2 \le x \le l \end{cases}$
And deduce the sum of the series $\frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \dots = \frac{\pi^{2}}{8}$
7.(a) Solve $y_{n+2} + 6y_{n+1} + 9y_{n} = 2^{n}$ with $y_{0} = y_{1} = 0$ Using Z-transform.
(b) If $E(x) = \frac{5z^{2} + 3z + 12}{2}$; then find the values of $y_{n-1}y_{n-1}$

(b) If
$$F(z) = \frac{5z^2 + 3z + 12}{(z-1)^4}$$
; then find the values of y_2, y_3
[8+8]

Page 2 of 2

www.FirstRanker.com

Subject Code: R13107/R13Set No - 2I B. Tech I Semester Supplementary Examinations Aug. - 2015MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, ECom.E, Agri.E)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1.(a) Find the reciprocal of 18 using Newten-Raphsen method.
 - (b) Prove that if f(x) is a polynomial of degree 'n' and the values of x are equally spaced then $\Delta^n f(x)$ is a constant.
 - (c) Solve By Euler's method, the equation $\frac{dy}{dx} = x + y$, y(0) = 0 Choose h=0.2 compute y(0.4).
 - (d) Define the Fourier series for even and odd functions.

(e) Find the Fourier transform f(x) defined by
$$f(x) = \begin{cases} e^{iqx}, \alpha < x < \beta \\ 0, x < \alpha, x > \beta \end{cases}$$

(f) Using Convolution theorem show that
$$Z^{-1} \left[\frac{1}{n!} * \frac{1}{n!} \right] = \frac{2}{n!}$$

[4+3+4+3+4+4]

[8+8]

- 2.(a) Find real root of the equation $x^3 + x + 1 = 0$ correct to 3 decimal places by iteration method.
 - (b) Find real root of the equation $x \log_{10} x = 1.2$ correct to 4 decimal places by regula Falsi method.
- 3.(a) Using Lagrange's formula, fit the polynomial to the data

Х	-1	0	2	3			
у	-8	3	1	12			
and hence find $y(1)$							

(b) Applying Netwon's forward interpolation formula compute the value of $\sqrt{5.5}$ given that $\sqrt{5} = 2.236, \sqrt{6} = 2.449, \sqrt{7} = 2.646, \sqrt{8} = 2.828$ correct upto three places of decimal. [8+8]

Page 1 of 2

Set No - 2

[8+8]

Subject Code: R13107/R13

- 4.(a) Given $\frac{dy}{dx} \sqrt{xy} = 2$ and y(1)=1. Find the value of y(1.5) in steps of 0.25 using Euler's modified method.
 - (b) Given $\frac{dy}{dx} = 1 + xy$, y=1at x=0 compute y(0.1) correct to 4 decimal places using Taylor series method.
- 5.(a) Find a Fourier series to represent the function $f(x) = e^x$, for $-\pi < x < \pi$ and hence derive a series for $\frac{\pi}{\sinh \pi}$

(b) Obtain the half-range sine and cosine series for the function f(x) = πx/8 (π − x) in the range 0 ≤ x ≤ π.

6.(a) Show that the Fourier transform of $f(x) = \begin{cases} a - |x|, for |x| < a \\ 0, for |x| > a \end{cases}$ is $\sqrt{\frac{2}{\pi}} \left(\frac{1 - \cos as}{s^2} \right)$

Hence deduce that
$$\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} = \frac{\pi}{2}$$

(b) Find the finite Fourier sine transform of f(x) = defined by $f(x) = \left(1 - \frac{x}{\pi}\right)^2$ where $0 < x < \pi$ [8+8]

- 7.(a) Find the inverse Z-transform of $\frac{4z^2 2z}{z^3 5z^2 + 8z 4z^2}$
 - (b) Find the Z-transform of the following functions

(i)
$$2n - 5\sin\frac{n\pi}{4} + 3a^4$$
 (ii) $\cos\left(\frac{n\pi}{2} + \theta\right)$
[8+8]

www.FirstRanker.com

Subject Code: R13107/R13Set No - 3I B. Tech I Semester Supplementary Examinations Aug. - 2015MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, ECom.E, Agri.E)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1.(a) What is the convergence of Newton –Raphson method.
 - (b) Find the second difference of the polynomial $x^4 12x^3 + 42x^2 30x + 9$ with interval of difference h=2
 - (c) Using Runge-Kutta method of second order, compute y(2.5) from $\frac{dy}{dx} = \frac{x+y}{x}$, y(2)=2,

Taking h=0.25.

(d) What is condition for expansion a Fourier series?

(e) Prove that
$$F(x^n f(x)) = (-i)^n \frac{d^n}{dp^n} [F(p)]$$

(f) Find
$$Z\left\lfloor \frac{1}{(n+1)(n+2)} \right\rfloor$$

[4+4+4+2+4+4]

PART-B

- 2.(a) Evaluate $\sqrt{12}$ and $\frac{1}{\sqrt{12}}$ by the fixed point iteration method.
 - (b) Find the real root for $xe^x = 2$ by using Regula –Falsi method.
- 3.(a) Using Lagrange's interpolation formula express $\frac{3x^2 + x + 1}{(x-1)(x-2)(x-3)}$ as sum of partial fractions.
 - (b) Using Netwen's forward interpolation formula, evaluate y(1.2).

	1.1				
у	0.21	0.69	1.25	1.89	2.61

[8+8]

[8+8]

- 4.(a) Use Runge-Kutta method to solve $10\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 for the interval $0 < x \le 4$ with h=0.4
 - (b) Apply Taylor series method to find y(1.1),y(1.2) correct to 3 decimal places, given $\frac{dy}{dx} = xy^{1/3}, y(0)=1.$

Page 1 of 2

[8+8]

www.FirstRanker.com

Set No - 3

Subject Code: R13107/R13

5.(a) If
$$f(x) =\begin{cases} x; 0 < x < \pi/2 \\ \pi - x; \pi/2 < x < \pi \end{cases}$$

Show that $f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\frac{1}{1^2} \cos 2x + \frac{1}{3^2} \cos 6x + \frac{1}{5^2} \cos 10x + \cdots - - \right]$
(b) Obtain a half range cosine series for $f(x) =\begin{cases} Kx, 0 \le x \le \frac{L}{2} \\ K(L-x), \frac{L}{2} \le x \le L \end{cases}$ Deduce the sum of
the series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{$

Page 2 of 2

www.FirstRanker.com

Subject Code: R13107/R13 Set No - 4 I B. Tech I Semester Supplementary Examinations Aug. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, ECom.E, Agri.E)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1.(a) What is the convergence of Newton Raphson method.
 - (b) Evaluate $\Delta^n e^{ax+b}$

(c) Using Euler's method, Solve for y at x=2 from
$$\frac{dy}{dx} = 3x^2 + 1$$
, y(1) = 2, and h=0.5

- (d) Find half range Fourier series for f(x) = ax + b, 0 < x < 1
- (e) State and prove that modulation property.

(f) Evaluate the inverse Z- transform of $\log(1 + \frac{a}{z}); |z| > |a|$

[3+4+4+3+4+4]

PART-B

- 2.(a) Find the root of the equation $x \sin x 1 = 0$ lies in between x=1 and x=1.5 using bisection method.
 - (b) Using Netwon Raphson method(i) Find square root of a number (ii) Find Reciprocal of a number.
- 3.(a) Find the cubic polynomial which takes the following values y(0) = 1, y(1)=0, y(2)=1, y(3)=10
 - (b) (i) if y_x is the value of at for which the fifth differences are constant and $y_1 + y_7 = -784$, $y_2 + y_6 = 686$, $y_3 + y_5 = 1088$, find y_4
 - (ii) if $f(x) = x^3 + 5x 7$, from a table of forward differences taking x = -1,0,1,2,3,4,5. Show that the third differences are constant.

[8+8]

- 4.(a) Given $\frac{dy}{dx} = x^2 + y$, y(0) = 1 determine y(0.02), y(0.04) using Euler's modified method.
 - (b) Given the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with initial condition y=0 at x=0, use Picard's method's to obtain y at x=0.25, x = 0.5, x =1. [8+8]

Page 1 of 2

www.FirstRanker.com

www.FirstRanker.com

Set No - 4

Subject Code: R13107/R13

5.(a) Obtain Fourier series for the function f(x) given by $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}, 0 \le x \le \pi \end{cases}$

and deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

- (b) Develop f(x) as Forier series in (-2,2), if $f(x) = \begin{cases} 0, -2 < x < -1 \\ k, -1 < x < 1 \\ 0, 1 < x < 2 \end{cases}$
- 6.(a) Find the Fourier sine transform of f(x), defined by $f(x) = x^{m-1}$
 - (b) Find the inverse Fourier cosine transform f(x) of $F_C(p) = \begin{cases} \frac{1}{2a}(a-\frac{p}{2}), p < 2a \\ 0, p \ge 2a \end{cases}$
- 7.(a) Find the inverse Z-transform of $\frac{8z-z^3}{(4-z)^3}$ (b) Find (i) $Z[n^2a^n]$ (ii) $Z[2.5^n+3.n]$ and deduce $Z[2.5^{n+3}+3(n+3)]$

Page 2 of 2

www.FirstRanker.com

[8+8]

[8+8]

[8+8]