Subject Code: R13110/R13
I B. Tech I Semester Supplementary Examinations Aug. - 2015 ENGINEERING MECHANICS
(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E)
Time: $\mathbf{3}$ hours
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory,
Three Questions should be answered from Part-B

Max. Marks: 70

PART-A

1.(a) What is the theorem used for the equilibrium of a particle applied with the three coplanar, concurrent forces? State and prove.
(b) Why static coefficient of friction is always greater than kinetic coefficient of friction?
(c) What is the moment of inertia of a triangular lamina about its horizontal centroidal axis?
(d) What is the centroid of a rectangle, circle and triangle about the both axes?
(e) The velocity of a particle is given by $\mathrm{V}=4 \mathrm{t}^{3}-5 \mathrm{t}^{2}$, when does the acceleration of the particle become zero?
(f) Write the equations of translation.

$$
[4+4+4+3+4+3]
$$

PART -B

2.(a) Prove that the angle of friction is equal to the angle of the inclined plane, when a solid body of weight W placed on the inclinedplane is about to slide down.
(b) State and prove the converse law of polygon of forces.
3. Find the force in the string PS, PQ and PR shown in fig. 1

Fig. 1

Page 1 of 2

Subject Code: R13110/R13

4.(a) Locate the centroid of the figure 2 shown below

Fig. 2
(b) Derive the centre of gravity of a flat plate.
5.(a) Derive the mass moment of inertia of a thin disc.
(b) State and prove parallel axis theorem.
6.(a) Derive the expression for maximum height for projectile motion.
(b) A stone is dropped from the top of a tower. When it has fallen a distance of 10 m , another stone is dropped from a point 38 m below the top of the tower. If both the stones reach the ground at the same time, calculate the height of the tower and the velocity of the stones when they reach the ground.
7.(a) Two particles of masses 10 kg and 20 kg are moving along a straight line towards each other at velocities of $4 \mathrm{~m} / \mathrm{s}$ and $1 \mathrm{~m} / \mathrm{s}$ respectively. If $\mathrm{e}=0.6$, determine the velocities of the particles immediately after collision. Also find the loss of kinetic energy.
(b) Explain the principle of conservation of energy.

Page 2 of 2

Subject Code: R13110/R13
I B. Tech I Semester Supplementary Examinations Aug. - 2015 ENGINEERING MECHANICS
(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E)
Time: $\mathbf{3}$ hours
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory,
Three Questions should be answered from Part-B

PART-A

1.(a) Find the resultant of the forces shown in the fig. 1 and the angle it makes with x-axis.

Fig. ${ }^{\circ}$
(b) Define the Varignon's theorem.
(c) Define centroid and centre of gravity.
(d) Find the area moment of inertia of a quarter circle of radius R.
(e) Derive the equation $\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$
(f) What are the different types of rigid body motions?

PART -B

2.(a) Two identical rollers, each of weight 200 N are supported by an inclined plane and a vertical wall as shown in the fig.2. Determine the reactions at the points of supports A, B and C assuming all the surfaces to be smooth. Also find the reaction forces between the spheres.

Subject Code: R13110/R13

2.(b) Define Angle of repose and angle of friction.
3. Find the force in the string shown in the fig. 3 below

Fig-3
4.(a) Locate the centroid for the shaded area as shown in the fig.4.

Fig. 4 (All Dimensions are in mm)
(b) State and prove Pappus theorems I and II.
5.(a) Calculate the product moment of inertia for an area shown in the fig5.

Fig. 5
Page 2 of 3

Subject Code: R13110/R13

5.(b) Find the mass moment of inertia of a thin rod of length L about its centroidal axes.
6.(a) Distinguish between translation motion and rotational motion.
(b) A stone is dropped from the top of a tower. When it has fallen a distance of 8 m , another stone is dropped from a point 32 m below the top of the tower. If both the stones reach the ground at the same time, calculate the height of the tower and the velocity of the stones when they reach the ground.
7.(a) Two particles of masses 12 kg and 24 kg are moving along a straight line towards each other at velocities of $5 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$ respectively. If $\mathrm{e}=0.6$, determine the velocities of the particles immediately after collision. Also find the loss of kinetic energy.
(b) Explain the work energy principle.

Subject Code: R13110/R13
 I B. Tech I Semester Supplementary Examinations Aug. - 2015 ENGINEERING MECHANICS
 (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E)
 Time: $\mathbf{3}$ hours
 Question Paper Consists of Part-A and Part-B
 Answering the question in Part-A is Compulsory,
 Three Questions should be answered from Part-B

Max. Marks: 70

PART-A

1.(a) State laws of friction.
(b) State the principle of transmissibility of force.
(c) Derive the centre of gravity of a 'I' section of web $10 \mathrm{~mm} \times 100 \mathrm{~mm}$ and flanges $10 \mathrm{~mm} \times 100 \mathrm{~mm}$.
(d) Find moment of inertia of a rectangular section.
(e) Derive the equation $v^{2}-u^{2}=2$ as
(f) Define coefficient of restitution.

PART -B

2.(a) A force $P=911 \mathrm{~N}$ is directed from point $\mathrm{A}(3,2,3)$ metres towards a point $B(-4,5,-1)$ meters. Determine the force vector P.
(b) Explain and define the term Free Body Diagram. Draw the free body diagram of a ball of weight W , supported by a string $A B$ and resting against a smooth vertical wall at C and also resting against a smooth horizontal floor at D
3. Three cylinders each weighing 130 N and 20 cm in diameter are placed in a channel of which is rectangular in section as shown in fig.1.
(i) Determine the pressure exerted by the cylinder A on B at the point of contact.
(ii) What are the pressures exerted by the two bottom cylinders at the base of the channel and walls at the point of contact.

Fig. 1

Subject Code: R13110/R13

4. Locate the centroid for the shaded area shown in the fig.3.

Fig-2
5.(a) State and prove Parallel Axis theorem.
(b) Find the mass moment of inertia about the centroidal axes for a right circular cone.
6.(a) A car travelling at a speed of $v=60 \mathrm{kmph} \cdot$ is braked and comes to rest in 8 sec after the brakes are applied. Find the minimum coefficient of friction between the wheels and the road.
(b) State and prove D'Alemberts principle.
7. A bullet of mass 81 gm and moving with a velocity $300 \mathrm{~m} / \mathrm{s}$ is fired into a block of wood and it penetrates to a depth of 12 cm . If the bullet moving with the same velocity were fired into a similar piece of wood 6 cm thick, with what velocity would it emerge? Also, find the force of resistance, assuming it to be uniform.

Subject Code: R13110/R13
I B. Tech I Semester Supplementary Examinations Aug. - 2015 ENGINEERING MECHANICS
(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E)
Time: $\mathbf{3}$ hours
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory,
Three Questions should be answered from Part-B

Max. Marks: 70

PART-A

1.(a) Define wedge and wedge friction.
(b) State triangular law of forces. What is the use of this law?
(c) Define couple.
(d) Using Pappus theorem find the volume of a sphere of radius r.
(e) Distinguish between rectilinear motion and curvilinear motion.
(f) Derive the equation for the work done by a Torque.

PART - B

2. Determine the horizontal force P required for wedge B to raise block A of weight 4000 N as shown in fig.1. The coefficient of friction on all surfaces is equal to 0.3 .

Fig-1

Subject Code: R13110/R13

3. Two identical rollers, each weighing 80 N are supported by an inclined plane and a vertical wall as shown in fig.2. Determine the reactions at the points of supports A, B and C assuming all the surfaces to be smooth. Also find the reaction forces between the spheres.

Fig2.
4.(a) Find C.G of the composite fig. 3 given below

Fig. 3
(b) State and prove Parallel Axis theorem.
5. Determine the mass moment of inertia of a right circular cone shown in the fig. 4

Fig. 4

Subject Code: R13110/R13

Set No - 4

6.(a) A homogeneous sphere of weight 120 N rolls along a 30° incline without slipping. The radius of the sphere is 100 mm . Determine the acceleration of the sphere.
(b) State and prove D'Alembert's principle.
7. Write about the following
(a) Coplanar concurrent forces
(b) Angular velocity and Angular acceleration
(c) Conservation of angular momentum
(d) Conservation of principle energy.

