

www.FirstRanker.com

· · · · · · · · · · · · · · · · · · ·			
II B. Tech I Se	mester Supplem NETWORI	entary Examinations K ANALYSIS	s, Jan - 2015
	(Com. to EC	CE, EIE, ECC)	
Time: 3 hours			Max. Marks: 75
	Answer any I	FIVE Questions	
1 a) State and explain Kirchh	off's lows with a	n oxomplo	
 a) State and explain Kitching b) Write notes on the follow 	ving.	n example.	
i) Ideal current source	ii) I	deal voltage source	
c) Explain the source transfe	ormation with an	example.	
2. a) Define the following term	ns:		
i) RMS value ii)	Form factor	iii) Peak factor	iv) Average value
b) Explain the principle of c	luality.		
c) Discuss about planar and	non planar grapl	hs?	
3. a) Explain the star-delta and	l delta-star transf	ormation for an imped	lance network.
b) Determine the total impe	dance of the circ	uit shown in Figure 3b	o?
_	: 200	2-Ω -j 4Ω	
2 ð ^^^			
	VV 0000	1Ω $i 23 \Omega$	
	Z		
	S	$\overline{Z_3}$	
N		Figure 3b	
4. a) For the circuit shown in I	Figure 4a, find th	e equivalent inductand	ce.
b) Define quality factor and	derive the expres	sion for the same for	RI C series circuit

- 5. a) State and explain substitution theorem
 - b) Find R in the Figure 5 so that maximum power is transferred to the resistance R.

6. a) Derive the relationship between transmission and hybrid parameters.b) Find the Z-parameters of the two-port network shown in Figure 6a.

- 7. a) Explain how the initial conditions are evaluated for the transient networks?
 - b) A series R-C circuit shown in Figure 7b, with $R = 105 \Omega$, $C = 2.5 \mu$ F has a sinusoidal voltage as source V = 250 sin (500t). Find the current assuming that there is no initial charge on the capacitor? 105 Ω

- 8. Write notes on the following:
 - a) Band pass filters
 - b) Band elimination filters
 - c) m-derived filters

www.FirstRanker.com

Code No: R21042	R10	SET - 2
II B. Tech I	Semester Supplementary Examinations	, Jan - 2015
	NETWORK ANALYSIS	
	(Com. to ECE, EIE, ECC)	
Time: 3 hours		Max Marks: 75

- 1. a) Calculate the charge stored on a 3 pF capacitor with 20V across it. Find the energy stored in the capacitor.
 - b) Show that the equivalent capacitance of *N* parallel-connected capacitors is the sum of the individual capacitance.
 - c) Determine all branches currents and voltage drops across all resistors of the circuit shown in the Figure 1c? 6Ω 2Ω

Figure 1c

- 2. a) Explain in detail about the tie set schedule with an example?
 - b) Find the average and effective values of saw tooth wave form shown in Figure 2b?

- 3. a) Show that real power consumed in a pure capacitor is zero.
 - b) For the circuit shown in Figure 3b, find the power factor, true power, reactive power and apparent power?

- 4. a) Explain the dot rules in magnetically coupled circuits.
 - b) A series RLC circuit has $R = 17\Omega$, L = 38mH, $C = 45\mu$ F. Calculate the resonant frequency and under resonance condition. Calculate current, power and voltage drops across various elements, if the applied voltage is 60V?

www.FirstRanker.com

Code No: R21042

R10

- 5. a) State and explain Maximum power transfer theorem.
 - b) Use superposition theorem to find i_o in the circuit shown in Figure 5.

6. Find the ABCD, hybrid parameters of the two-port network shown in Figure 6.

- 7. a) Find the voltage across the capacitance for t > 0 in the circuit shown in Figure 7.
 - b) Derive an expression for current in an RL circuit when it is excited by a unit step voltage.

- 8. a) What are the applications of *m*-derived low-pass filter?
 - b) Design an m-derived low pass filter having cutoff frequency of 2 kHz, resonant frequency 1000 Hz and design impedance of 450 Ω .

2 of 2

www.FirstRanker.com

www.FirstRanker.com

All Questions carry Equal Marks

1. a) Find the equivalent capacitance seen between terminals *a* and *b* of the circuit in Figure 1a.

b) Find the power for each device (see Figure 1b)

- 2. a) Find the average value, RMS value and form factor of a sinusoidal wave.
 - b) Write notes on phasor representation of sinusoidal waves.
 - c) Explain the duality with an example.
- 3. a) An RL series circuit of $R = 4.7 \text{ k}\Omega$ and L = 1 H is connected across a voltage source of 150 V, 50 Hz. Determine impedance, power factor, current flowing in the circuit? What is the power dissipated in the circuit.
 - b) Show that active power consumed in pure inductor is zero.
- 4. a) Explain in detail about the concept of resonance in series RLC circuit. Derive the expression for resonant frequency?
 - b) Derive the expression for coefficient of coupling between the two coupled coils?
 - c) Discuss the properties of anti resonance circuits.

Code No: R21042

www.FirstRanker.com

R10 SET - 3

5. a) State and explain reciprocity theorem.b) Obtain Thevenin equivalent of the circuit shown in Figure 5 with respect to the terminals a-b

6. a) Explain about inverse hybrid parameters and how they are determined?b) Find Y parameters for the network shown in Figure 6b?

- 7. a) Derive an expression for current in an RC series circuit energized by a DC voltage source.
 - b) A series RLC circuit with R=20 ohms, L=0.2 henries and C=0.35 farads has a constant voltage of 60 Volts applied at time t=0. Determine the transient current i(t). Assume zero initial conditions.
- 8. a) Write notes on the following: i) Composite filters ii) Frequency selective filters
 - b) Design a m-derived High Pass Filter with a cut-off frequency of 10 kHz. Design impedance of 550Ω and m = 0.5

www.FirstRanker.com

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Find the current $i_{0,}$ using nodal analysis, in the circuit shown in Figure 1a.
 - b) Write short notes on independent sources and dependent sources.

- 2. a) Discuss briefly about branch, node, tree with an example?
 - b) Derive the expression for the RMS and average value for the output waveform of half wave rectifier?
- 3. a) Find the impedance and voltage across resistor and inductor, if a resistor of $1k\Omega$ and an inductor of 110 mH are connected in series to a source o 11 V, 10 kHz? Also find the power factor and power dissipated in the circuit.
 - b) Draw the phasor diagrams for R-L and R-C circuit excited by a sinusoidal voltage.
- 4. a) Define Q-factor and derive expressions for Q-factor and bandwidth of series resonant circuits.
 - b) Show that the resonant frequency is the geometric mean of two half power frequencies.

1 of 2

www.FirstRanker.com

Code No: R21042

 $(\mathbf{R10})$

(SET - 4)

- 5. a) State and explain Tellegen's theorem.
 - b) Use superposition theorem to find the current through R_1 of circuit shown in Figure 5a.

- 6. a) Explain the relationship between ABCD and Z-parameters.
 - b) For the T-network shown in Figure 6, determine Z-parameters.

- 7. a) What is time constant? Write the expressions of time constant for R-L and R-C circuits. What are its uses in electrical engineering.
 - b) The switch in the circuit shown in Figure 7 has been closed for a long time. It is opened at t = 0. Find the current i(t) for t > 0.

- 8. a) Draw the circuit diagram of *m*-derived shunt low-pass filter half section.
 - b) Write notes on composite design of low-pass filters.
 - c) Draw the magnitude response of ideal frequency-selective filters.

2 of 2

www.FirstRanker.com