

www.FirstRanker.com

- 3 a) Derive the necessary equations for converting star connected resistances to delta [8] connected resistances.
 - b) In a series RL circuit the current and voltage are given as $I = 4 \cos (314t 20^0) A$, [7] $V = 10 \cos (314t + 10^0) V$. Find the values of R and L.
- 4 a) Explain the properties of resonance for a series RLC circuit [7]
 - b) A coil having an inductance and resistance of 50 mH and 100 Ω is connected in series [8] with a capacitor and a 100 V, 1K Hz Source. Obtain the value of capacitance that will cause the resonance in the circuit. Find the circuit current at resonance frequency.

1 of 2

6

www.FirstRanker.com

[7]

- 5 a) State and explain compensation theorem
 - b) Calculate the current in 4Ω resistor for the circuit shown below using Millman's [8] theorem.

Obtain Z – Parameters and transmission parameters for the circuit shown below. [15]

- 7 a) What are the merits and demerits of Laplace transform
 - b) Given that current in the circuit at t = 0 is 5A. Obtain i(t) at $t = 0^+$ for the figure [7] shown below:

- 8 a) Analyze m derived low pass filter.
 - b) Explain Band elimination filter

[8] [7]

[8]

www.FirstRanker.com

www.FirstRanker.com

- 4 a) Explain the effect of resistance and inductance on the frequency response curve. [7]
 - b) Find the value of R_1 such that the given circuit in figure is resonant. [8]

1 of 2

Code No: R21042

www.FirstRanker.com

www.FirstRanker.com

- 5 a) State and explain Norton's theorem
 - b) Determine Norton's equivalent circuit at terminals AB for the circuit shown in figure below

R10

6 a) Obtain open circuit parameters and loop equations of the network shown in figure below:

- b) Derive the relation between Z parameters and ABCD parameters.
- 7 The following figure represents a parallel RLC circuit where $R = 0.1\Omega$, L = 0.5 H and C = 1 F. Capacitor has an initial voltage of 10V with polarity shown in figure. The switch K is closed at time t = 0. Obtain V(t)

[15]

[8]

- 8 a) What are Active and Passive filters? List the advantages of active filters over passive filters.
 - b) A T- section low pass filter has series inductance 80 mH and shunt capacitance
 0.022 μF. Determine the cut off frequency and nominal design impedance. [7]

www.FirstRanker.com

[8]

[7]

[7]

[8]

www.FirstRanker.com

b) In an ideal transformer, the mutual inductance is 10 H, number of primary and [8] secondary turns are 50 and 200. Obtain the value of primary current to produce 0.5 Wb flux to link with the secondary coil.

1 of 2

FirstRanker.com

Code No: R21042

www.FirstRanker.com

[7]

[8]

[7]

- 5 a) State and explain superposition theorem
 - b) Calculate the current across the 3 Ω resistor for the circuit shown below using super [8] position theorem and also calculate the power across 3 Ω resistor.

6 a) Obtain the short circuit parameters for the network shown below:

- b) Derive the relation between Z parameters and Y parameters. [7]
- 7 a) Obtain the transient response of RL series circuit having DC excitation. [7]
 - b) A series RL circuit having $R = 25 \Omega$ and L = 5H. A dc voltage of 100 V is applied at t [8] = 0. Find the equations for current and voltage across R and L.

8 a) Compare m –derived and prototype filters.

b) Design a m –derived low pass filter(T) section having design resistance $R_o = 500\Omega$, [8] cut – off frequency $f_c = 1500$ Hz and infinite attenuation frequency $f_{\alpha} = 2000$ Hz.

2 of 2

www.FirstRanker.com

1 of 2

www.FirstRanker.com

- 5 a) State and explain Norton's theorem
 - b) Find the thevenin's equivalent circuit for the network shown below:

6 a) Find Y –Parameters for the network shown below:

b) Derive the relation between Y –parameters and ABCD parameters.

			[7]
7	a)	Obtain transient response of RC circuit having DC excitation.	[8]
	b)	Calculate the time taken by a capacitor of 1 μ F and in series with a 1M Ω resistance to	
		be changed up to 80 % of the final value.	
			[7]
8	a)	Explain about the classification of filters, along with the characteristics of each type of	
	. .	filter.	[8]
	b)	Design a Low pass filter.	[7]

2 of 2

[8]

[7]